PhenothiazineϪBipyridinium Cyclophanes
FULL PAPER
3
NϩCH2), 6.70 (d, J ϭ 8.3 Hz, 1 H, ArH, pos. 9), 6.76 (‘‘d’’, 1 H,
9.11 (‘‘d’’, 4 H, PyH); in CD3CN (360 MHz): δ ϭ 3.02 (s, 3 H,
ArH, pos. 1), 6.81 (‘‘dd’’, 3J ϭ 7.8 Hz, 1 H, ArH, pos. 3), 6.94 (‘‘s’’, NCH3), 3.55Ϫ3.75 (m, 16 H, 2 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2
1 H, ArH, pos. 6), 6.95 (d, 3J ϭ 7.7 Hz, 1 H, ArH, pos. 4), 7.03
ϩ 2Ј-CH2 ϩ 2 ϫ CH2CH2OCO), 3.94 (m, 4 H, 2NϩCH2CH2), 4.36
(dd, 3J ϭ 8.3, 4J ϭ 1.6 Hz, 1 H, ArH, pos. 8), 8.38 (d, 3J ϭ 6.7 Hz, (m, 4 H, 2 CO2CH2), 4.71 (m, 4 H, 2NϩCH2), 6.51 (d, 3J ϭ 8.3 Hz,
3
2 H, PyH), 8.41 (d, J ϭ 6.7 Hz, 2 H, PyH), 9.12 (m, 4 H, PyH)
1 H, ArH, pos. 9), 6.65 (‘‘s’’, 1 H, ArH, pos. 1), 6.83 (‘‘AB’’, J ϭ
Ϫ
1H NMR (CD3CN, 360 MHz): δ ϭ 3.04 (s, 3 H, NCH3), 7.5 Hz, 2 H, ArH, pos. 3 ϩ pos. 4), 6.90 (d, 4J ϭ 2.0 Hz, 1 H, ArH,
3.55Ϫ3.75 (m, 16 H, 3 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2), 3.98 pos. 6), 7.04 (dd, 3J ϭ 8.3, 4J ϭ 2.0 Hz, 1 H, ArH, pos. 8), 7.85 (d,
(m, 4 H, NϩCH2CH2), 4.36 (m, 4 H, CO2CH2), 4.83 (m, 4 H, 3J ϭ 6.9 Hz, 2 H, PyH), 7.93 (d, J ϭ 6.9 Hz, 2 H, PyH), 8.70 (d,
3
NϩCH2), 6.58 (d, 3J ϭ 8.3 Hz, 1 H, ArH, pos. 9), 6.73 (d, 4J ϭ 3J ϭ 7.0 Hz, 2 H, PyH), 8.76 (d, J ϭ 7.0 Hz, 2 H, PyH). Ϫ MS
3
1.0 Hz, 1 H, ArH, pos. 1), 6.85 (dd, 3J ϭ 7.8, 4J ϭ 1.3 Hz, 1 H,
(FAB): m/z (%) ϭ 715 (100) [Mϩ Ϫ 2 ClO4], 814 (17) [M Ϫ ClO4].
ArH, pos. 3), 6.89 (d, 3J ϭ 7.8 Hz, 1 H, ArH, pos. 4), 6.92 (d, 4J ϭ Ϫ HRMS calcd. for C39H45O12N3ClS [M Ϫ ClO4] 814.2412;
2.0 Hz, 1 H, ArH, pos. 6), 7.06 (dd, 3J ϭ 8.3, 4J ϭ 2.1 Hz, 1 H,
found 814.2438.
ArH, pos. 8), 7.89 (d, 3J ϭ 7.0 Hz, 2 H, PyH), 7.98 (d, 3J ϭ 7.0 Hz,
3
3
Compound 4d: The preparation was analogous to that of 4c, start-
ing from [11.11]cyclophanium diiodide 4a and potassium hexa-
fluorophosphate in water. The precipitated 4d was filtered off, dried
at 50 °C in vacuo and recrystallized from acetonitrile, m.p. 196 °C
(decomp.). Ϫ 1H NMR (360 MHz, D2O, only characteristic signals
given): δ ϭ 3.07 (s, 3 H, NCH3), 3.82 (m, 4 H, NCH2CH2), 4.05
2 H, PyH), 8.81 (d, J ϭ 7.0 Hz, 2 H, PyH), 8.87 (d, J ϭ 7.0 Hz,
1 H, PyH). Ϫ 1H NMR (CD2Cl2, 360 MHz): δ ϭ 3.11 (s, 3 H,
NCH3), 3.60Ϫ3.75 (m, 16 H, 3 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2),
4.08 (m, 4 H, NϩCH2CH2), 4.42 (m, 4 H, CO2CH2), 5.12 (m, 4 H,
NϩCH2), 6.69 (d, 4J ϭ 1.4 Hz, 1 H, ArH, pos. 1), 6.71 (d, 3J ϭ
8.4 Hz, 1 H, ArH, pos. 9), 6.89 (dd, 3J not determinable, 4J ϭ
1.5 Hz, 1 H, ArH, pos. 3), 6.90 (d, 4J ϭ 1.9 Hz, 1 H, ArH, pos. 6),
6.95 (d, J ϭ 7.8 Hz, 1 H, ArH, pos. 4), 7.13 (dd, J ϭ 8.3, J ϭ
2.0 Hz, 1 H, ArH, pos. 8), 8.06 (d, J ϭ 6.9 Hz, 2 H, PyH), 8.17
(d, J ϭ 6.9 Hz, 2 H, PyH), 9.28 (d, J ϭ 6.9 Hz, 2 H, PyH), 9.38
3
(m, 4 H, CO2CH2), 4.42 (m, 4 H, NϩCH2), 6.65 (d, J ϭ 8.4 Hz,
3
3
4
1 H, ArH, pos. 9), 6.73 (‘‘d’’, X part of ABX, 1 H, ArH, pos. 1),
3
6.93 (AB part of ABX, JAB ϭ 7.8 Hz, JBX ϭ 1.3 Hz, νB ϭ 6.92,
4
3
3
νA ϭ 6.94, 2 H, ArH, pos. 3 and pos. 4), 7.01 (d, J ϭ 2.0 Hz, 1
3
4
3
H, ArH, pos. 6), 7.15 (dd, J ϭ 8.4, J ϭ 2.1 Hz, 1 H, ArH, pos.
˜
(d, J ϭ 6.9 Hz, 2 H, PyH). Ϫ IR (KBr): ν ϭ 1730, 1712 ν(CϭO).
8), 7.97 (d, 4J ϭ 6.9 Hz, 2 H, PyH), 8.05 (d, 4J ϭ 6.9 Hz, 2 H,
Ϫ MS (FAB): m/z ϭ 715 [Mϩ Ϫ 2 I]. Ϫ C39H45I2O8N3S·H2O
(987.7): calcd. C 47.43, H 4.80 N 4.25, S 3.25; found C 47.28, H
4.59, N 4.37, S 3.29.
3
4
PyH), 8.86 (d, J ϭ 6.9 Hz, 2 H, PyH), 8.92 (d, J ϭ 6.9 Hz, 2 H,
PyH). Ϫ 1H NMR ([D6]DMSO): δ ϭ 3.10 (s, 3 H, NCH3),
3.40Ϫ3.70 (m, 16 H, 2 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2 ϩ 2 ϫ
CH2CH2OCO), 3.88 (‘‘t’’, 2 H, NϩCH2CH2), 4.20 (m, 4 H,
2CO2CH2), 4.78 (‘‘t’’, 2 H, NϩCH2), 4.82 (‘‘t’’, 2 H, NϩCH2), 6.69
Compound 4b: A solution of [11.11]cyclophanium diiodide 4a
(50 mg, 0.051 mmol) in 100 mL of water was shaken with silver
oxide (100 mg, 0.71 mmol), with ice cooling. The suspension con- (d, 3J ϭ 8.4 Hz, 1 H, ArH, pos. 9), 6.75 (d, 4J ϭ 1.3 Hz, 1 H, ArH,
taining the precipitated silver iodide was immediately filtered into
pos. 1), 6.81 (dd, 3J ϭ 7.9, 4J ϭ 1.3 Hz, 1 H, ArH, pos. 3), 6.94 (d,
3
a solution of 48% tetrafluoroboric acid (15 µL, 0.08 mmol). The
4J ϭ 2.5 Hz, 1 H, ArH, pos. 6), 6.94 (d, J ϭ 7.5 Hz, 1 H, ArH,
violet solution was lyophilized and the crude material crystallized pos. 4), 7.02 (dd, 3J ϭ 8.4, 4J ϭ 2.0 Hz, 1 H, ArH, pos. 8), 8.36 (d,
4
from acetonitrile, to give 4b (24 mg, 53%) as violet microcrystals,
4J ϭ 6.6 Hz, 2 H, PyH), 8.39 (d, J ϭ 6.8 Hz, 2 H, PyH), 9.11 (d,
m.p. 205 °C. Ϫ H NMR (360 MHz, CD3CN): δ ϭ 3.02 (s, 3 H, 4J ϭ 5.8 Hz, 4 H, PyH); in CD3CN (360, MHz): δ ϭ 3.02 (s, 3 H,
NCH3), 3.50Ϫ3.80 (m, 16 H, 2 ϫ CH2CH2O ϩ 2 ϫ CH2CH2OCO NCH3), 3.55Ϫ3.75 (m, 16 H, 2 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2
ϩ 7Ј-CH2 ϩ 2Ј-CH2), 3.95 (m, 4 H 2 NϩCH2CH2), 4.37 (m, 4 H, ϩ 2 ϫ CH2CH2OCO), 3.94 (m, 4 H, 2NϩCH2CH2), 4.36 (m, 4 H,
2 CO2CH2), 4.71 (m, 4 H, 2 NϩCH2), 6.50 (‘‘d’’, br., 1 H, ArH, 2CO2CH2), 4.70 (m, 4 H, 2 ϫ NϩCH2), 6.49 (d, 3J ϭ 8.3 Hz, 1 H,
1
pos. 9), 6.64 (‘‘s’’, br. 1 H, ArH, pos. 1), 6.83 (‘‘s’’, br. 2 H, ArH,
pos. 3 ϩ 4), 6.90 (‘‘s’’, br. 1 H, ArH, pos. 6), 7.03 (‘‘d’’, br. 1 H,
ArH, pos. 8), 7.83 (d, 3J ϭ 6.9 Hz, 2 H, PyH), 7.91 (d, 3J ϭ 6.9 Hz,
ArH, pos. 9), 6.64 (X part of ABX, not resolved, 1 H, ArH, pos.
1), 6.83 (AB part of ABX, JAB ϭ 7.9 Hz, JAX ϭ 1.4 Hz, νB ϭ 6.82,
4
νA ϭ 6.84, 2 H, ArH pos. 4 ϩ pos. 3), 6.90 (d, J ϭ 2.1 Hz, 1 H,
3
3
3
4
2 H, PyH), 8.69 (d, J ϭ 7.0 Hz, 2 H, PyH), 8.74 (d, J ϭ 7.0 Hz, ArH, pos. 6), 7.04 (dd, J ϭ 8.3, J ϭ 2.1 Hz, 1 H, ArH, pos. 8),
2 H, PyH). Ϫ MS (FAB): m/z (%) ϭ 715 (100) [Mϩ Ϫ 2 BF4], 802
(20) [Mϩ Ϫ BF4]. Ϫ HRMS calcd. for C39H50O8N3F4SB [M Ϫ
BF4] 802.2902; found 802.2929.
7.84 (d, J ϭ 7.0 Hz, 2 H, PyH), 7.92 (d, J ϭ 6.9 Hz, 2 H, PyH),
3
3
3
3
8.69 (d, J ϭ 7.0 Hz, 2 H, PyH), 8.74 (d, J ϭ 7.1 Hz, 2 H, PyH).
Ϫ1
˜
Ϫ IR (KBr): ν ϭ 1732 cm (CϭO). Ϫ MS (FAB): m/z (%) ϭ
715 (100) [M Ϫ 2 PF6], 860 (24) [Mϩ Ϫ PF6], 1005 (0.4) [Mϩ]. Ϫ
C39H45O8N3S·2PF6·H2O (1023.8): calcd. C 45.75, H 4.63, N 4.10,
S 3.13; found C 45.65, H 4.44, N 3.79, S 3.19.
Compound 4c: Sodium perchlorate (24.7 mg, 0.202 mmol) was ad-
ded to a solution of [11.11]cyclophanium diiodide 4a (100 mg,
0.101 mmol) in 100 mL of water. The reaction mixture was kept in
the refrigerator overnight. The deposited precipitate was filtered off
and washed with a small amount of cold water to remove the re-
Compound 5a: The preparation was according to the general pro-
cedure described above, starting from 14 and 10. The reaction time
maining sodium iodide. The crude material was crystallized from was 4 d. The crude material was dissolved in 30 mL of water and
acetonitrile and dried in vacuo to give 4c (43.4 mg, 47%) as violet purified by chromatography on BIORAD P-2 Gel (fine) with water.
microcrystals, m.p. 238Ϫ240 °C.
1H NMR (360 MHz, The product was recognizable on the column as a grey blue zone.
[D6]DMSO): δ ϭ 3.10 (s, 3 H, NH3), 3.20Ϫ3.60 (m, 14 H, 2 ϫ The fraction was frozen and the solvent removed by lyophilization.
Ϫ
CH2CH2O ϩ 7Ј- CH2 ϩ2 ϫ CH2CH2OCO), 3.65 (s, 2 H, 2Ј-CH2), The residue was recrystallized from methanol to give 5a (200 mg,
3.88 (‘‘t’’, 2 H, NCH2CH2), 3.91 (‘‘t’’, 2 H, NCH2CH2), 4.20 (m, 4 17%) as black-red crystals, m.p. 75 °C (slow sintering). Ϫ 1H NMR
H, CO2CH2), 4.78 (‘‘t’’, 2 H, NϩCH2), 4.82 (‘‘t’’, 2 H, NϩCH2), (360 MHz, [D6]DMSO): δ ϭ 3.16 (s, 3 H, NCH3), 3.30Ϫ3.65 (m,
6.69 (d, 3J ϭ 8.3 Hz, 1 H, ArH, pos. 9), 6.75 (d, 4J ϭ 1.3 Hz, 1 H, 24 H, 4 ϫ CH2CH2O ϩ 7Ј-CH2 ϩ 2Ј-CH2 ϩ 2 ϫ CH2CH2OCO),
3
4
ArH, pos. 1), 6.81 (dd, J ϭ 7.8, J ϭ 1.3 Hz, 1 H, ArH, pos. 3), 3.95 (m, 4 H, 2 ϫ NϩCH2CH2), 4.15 (m, 4 H, 2 ϫ CO2CH2), 4.86
6.93 (d, 4J ഠ 2.6 Hz, 1 H, ArH, pos. 6), 6.94 (d, 3J ഠ 7.6 Hz, 1 H, (m, 4 H, 2 ϫ NϩCH2), 6.74 (d, 3J ϭ 8.4 Hz, 1 H, ArH, pos. 9),
3
4
ArH, pos. 4), 7.02 (dd, J ϭ 8.3, J ϭ 2.1 Hz, 1 H, ArH, pos. 8), 6.77 (‘‘d’’, 1 H, ArH, pos. 1), 6.79 (dd, 3J ϭ 7.7, 4J ϭ 1.5 Hz, ArH,
3
3
8.35 (d, J ϭ 6.6 Hz, 2 H, PyH), 8.39 (d, J ϭ 6.6 Hz, 2 H, PyH), pos. 3), 6.93 (d, 3J ϭ 7.7 Hz, 1 H, ArH, pos. 4), 6.95 (d, 4J ϭ
Eur. J. Org. Chem. 2001, 3255Ϫ3278 3267