Published on Web 03/27/2002
A Convergent Three-Component Total Synthesis of the
Powerful Immunosuppressant (-)-Sanglifehrin A
Leo A. Paquette,* Maosheng Duan, Ingo Konetzki, and Christoph Kempmann
Contribution from the EVans Chemical Laboratories, The Ohio State UniVersity,
Columbus, Ohio 43210
Received January 17, 2002
Abstract: The potent immunosuppressive agent (-)-sanglifehrin A (5), initially discovered in a soil sample
from Malawi, has been synthesized in a highly convergent and stereocontrolled manner. The enantioselective
approach relies on initial construction of the iodovinyl carboxylic acid 14, which is coupled to tripeptide 59
in advance of a key macrolactonization step that generates 61a. An alternative protocol that involves the
linkage of 14 to 46 for possible construction of the large ring failed due to an inability to bring about a
corresponding macrolactamization maneuver. An efficient means for elaborating the C26-N42 spirolactam
western sector of 5 is also detailed. This requisite fragment was assembled through the proper adaptation
of consecutive aldol tactics for construction of the nine stereogenic centers, six of which are contiguous.
The first aldol process consisted of the tin triflate-mediated reaction of the aldehyde derived from 72 with
enantiopure ketone 73 to generate the syn C36-C37 relationship resident in 75. Once the conversion of
75 to 78 had been completed, the attachment to ketone 66 was effected with (+)-DIPCl, thereby setting
the C33-C34 relationship as anti. Once functional group modifications had given rise to 62, spirolactam-
ization was achieved to deliver predominantly 94, thereby setting the stage for the acquisition of vinyl
stannane 13 and its subsequent palladium-catalyzed Stille coupling to 61b. Controlled acidic hydrolysis
completed the synthesis of 5. Other important features of the present route are addressed where relevant.
prominent immunosuppressants are cyclosporin A (CsA, 1),9,10
FK506 (2),11 and rapamycin (3).12-18A more recent newcomer
Introduction
The immune system is a multicellular ensemble designed to
eliminate foreign entities from the body. The sophisticated
response brought into play when such an event occurs involves
the growth and proliferation of cells that recognize and
ultimately reject the substance.1-4 This phenomenon is triggered
as the result of signal transduction, that process wherein
extracellular molecules influence intracellular events.5-8 In the
past decade or so, several important signaling drugs have been
discovered that become intimately involved in the orchestration
of the immune response. These powerful biochemical tools
exhibit specific cellular effects that allow dissection of the
mechanisms of signal transduction at the molecular level, shed
light on intracellular signaling pathways involved in T-cell
activation, and make possible organ transplantation. The most
is the marine sponge metabolite pateamine A (4).19
While 1-3 mediate their immunosuppressive properties
through immunophilins, they do so in unique ways. Thus, 1
binds to cyclophilins, while 2 and 3 bind to protein receptors
known as FKBPs.20-27 Beyond this, calcineurin, the essential
enzyme involved in intracellular signal transduction emanating
(9) Sehgal, S. N.; Baker, H.; Eng, C. P.; Singh, K.; Ve´zina, C. J. Antibiot.
1983, 36, 351-354.
(10) Findlay, J. A.; Liu, J. S.; Burnell, D. J.; Nakashima, T. T. Can. J. Chem.
1982, 60, 2046-2047.
(11) Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara,
M.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1987, 40, 1249-
1255.
(12) Ve´zina, C.; Kudelski, A.; Sehgal S. N. J. Antibiot. 1975, 28, 721-726.
(13) Sehgal, S. N.; Baker, H.; Ve´zina, C. J. Antibiot. 1975, 28, 727-732.
(14) Baker, H.; Sidorowicz, A.; Sehgal, S. N.; Ve´zina, C. J. Antibiot. 1978, 31,
539-545.
(15) Singh, K.; Sun, S.; Ve´zina, C. J. Antibiot. 1979, 32, 630-645.
(16) Swindells, D. C. N.; White, P. S.; Findlay, J. A. Can. J. Chem. 1978, 56,
2491-2492.
* To whom correspondence should be addressed. E-mail: paquette.l@
osu.edu.
(1) Thompson, A. W., Starzl, T. E., Eds. ImmunosuppressiVe Drugs: DeVelop-
ments in Anti-Rejection Therapy; Edward Arnold: London, 1994.
(2) Abbas, A. K.; Lichtman, A. H.; Pober, J. S. Cellular and Molecular
Immunology; Saunders: Philadelphia, 1991.
(3) Darnell, J.; Lodish, H.; Baltimore, D. Molecular Cell Biology, 2nd ed.;
Scientific American Books: New York, 1990.
(17) McAlpine, J. B.; Swanson, S. J.; Jackson, M.; Whittern, D. N. J. Antibiot.
1991, 44, 688-690.
(18) Findlay, J. A.; Radics, L. Can. J. Chem. 1980, 58, 579-590.
(19) Northcote, P. T.; Blunt, J. W.; Munro, M. H. G. Tetrahedron Lett. 1991,
32, 6411-6414.
(20) Siekierka, J. J.; Hung, S. H. Y.; Poe, M.; Lin, C. S.; Sigal, N. H. Nature
1989, 341, 755-757.
(4) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D.
Molecular Biology of the Cell, 2nd ed.; Garland Publishing: New York,
1989.
(21) Harding, M. W.; Galat, A.; Uehling, D. E.; Schreiber, S. L. Nature 1989,
341, 758-760.
(5) Liu, J. Immunol. Today 1993, 14, 290-295.
(22) Rosen, M. K.; Standaert, R. F.; Galat, A.; Nakatsuka, M.; Schreiber, S. L.
Science 1990, 248, 863-866.
(6) Belshaw, P. J.; Meyer, S. D.; Johnson, D. D.; Romo, D.; Ikeda, Y.; Andrus,
M.; Alberg, D. G.; Schultz, L. W.; Clardy, J.; Schreiber, S. L. Synlett 1994,
381-391.
(23) Fretz, H.; Albers, M. W.; Galat, A.; Standaert, R. F.; Lane, W. S.; Burakoff,
S. J.; Bierer, B. E.; Schreiber, S. L. J. Am. Chem. Soc. 1991, 113, 1409-
1411.
(7) Schreiber, S. L. Science 1991, 251, 283-287.
(8) Schreiber, S. L.; Albers, M. W.; Brown, E. J. Acc. Chem. Res. 1993, 26,
412-420.
(24) Van Duyne, G. D.; Standaert, R. F.; Schreiber, S. L.; Clardy, J. J. Am.
Chem. Soc. 1991, 113, 7433-7434.
9
10.1021/ja020091v CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. 2002, 124, 4257-4270
4257