J . Org. Chem. 2001, 66, 7869-7872
7869
syn11 aldol reductions with Mitsunobu reaction12 allow
to prepare, in principle, 16 diastereomeric pentadecane-
1,3,5,7,9,11,13,15-octols (e.g., (-)-5) and analogues (Scheme
1). If the syn relationship between the 4-methoxyben-
zoates at C-3 and C-13 (atom numbering of (-)-5) could
be changed into an anti relative configuration, all possible
stereomeric pentadecane-1,3,5,7,9,11,13,15-octols could
be reached in both enantiomeric forms. We report here
a solution to that problem.
F r om 2,2′-Meth ylen ed ifu r a n to All
Ster eom er ic
P en ta d eca n e-1,3,5,7,9,11,13,15-octols
Marc-Etienne Schwenter and Pierre Vogel*
Section de Chimie, Universite´ de Lausanne, BCH,
CH-1015 Lausanne-Dorigny, Switzerland
As already described,8 diol (-)-4 was converted (Scheme
2) into tetrol (-)-6 in 75% overall yield. Treatment of
(-)-6 with (MeO)2CMe2 in acetone under acidic conditions
(pyridinium paratoluenesulfonate) gave acetonide (-)-7
in 92% yield. Heating (-)-7 in acetonitrile in the presence
of 12 equiv of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)
induced the isomerization of (-)-7 into the primary
paramethoxybenzoate (-)-8. Equilibrium ([(-)-8]/[(-)-7]
) 3.0) was reached after 4 h at 80 °C, and (-)-8 could be
isolated in 70% yield (Scheme 2). This result can be
interpreted in terms of acyl group migration from the C-3
to the C-1 position (atom numbering of (-)-5; IUPAC
numbering: 2′′′,4′′′, see (-)-8), the primary ester (-)-8
being more stable than (-)-7 for steric reasons. Also for
steric reasons, the intramolecular migration of the
paramethoxybenzoyl group from the 1-oxy position to the
6-hydroxy group of the cycloheptenol moiety is forbidden.
Attempts to displace the acyclic secondary alcohol at C-3
(atom numbering of (-)-5; IUPAC: 2′′′) using the Mit-
sunobu reaction ((EtOOC)2N2, PPh3, 4-NO2C6H4COOH)12
were not met with success. They led to complex mixtures.
Selective sulfonylation of the acyclic alcohol at C-3
(IUPAC: 2′′′) with CH3SO2Cl and p-TsCl (pyridine, Et3N)
also led to intractable mixtures.
Selective methanolysis of the acyclic paramethoxyben-
zoate at C-3 (IUPAC: 6′) was possible on treating (-)-7
in MeOH containing 7.2 equiv of Mg(OMe)2 (40 °C, 8 h).
This furnished triol (-)-9 in 68% yield, together with 12%
of (-)-8. Dihydroxylation of the cycloheptene moiety of
(-)-9 with (N-methylmorpholine N-oxide, cat. OsO4, CCl4)
followed by oxidative cleavage of the vicinal diol with Pb-
(OAc)4 provided (+)-10 (3:2 mixture of anomers) in 92%
yield. Treatment of (+)-10 with (i-prop)3SiCl and imida-
zole (DMF, 20 °C, 48 h) led to selective double silylation
of the pyranose and primary alcoholic functions, leaving
the secondary alcohol at C-3 (IUPAC: 2′′′) unprotected.
This provided (+)-11 in 73% yield as a single â-pyrano-
side.13 Sulfonylation of the secondary alcohol (+)-11 with
CH3SO2Cl (pyridine, DMAP cat.) gave the corresponding
mesylate that was not purified but used directly in the
next step. Heating this mesylate in benzene containing
anhydrous CsOAc and 18-crown-6 ether led to a 3:2
mixture of the product of SN2 substitution (+)-12 and of
unreacted mesylate. This could not been pushed to
completion as decomposition completed with the substi-
tution. Acetate (+)-12 was isolated in 63% yield, together
with unreacted mesylate (32%), after column flash chro-
pierre.vogel@ico.unil.ch
Received February 13, 2001
A great variety of natural products of biological interest
includes polyketides (1,3-polyoxo, 1,3-polyols, aldols).1
Several approaches for their synthesis have been pro-
posed.2,3 Inspired by the work of Lautens4 and Hoffmann
and co-workers,5 who have converted 8-oxabicyclo[3.2.1]-
oct-6-en-3-one into 7-carbon-1,3-polyols and analogues,6
and by that of Kaku et al.,7 who have transformed
cyclohept-3-ene-1,6-diol into 1,3-polyols, we have pro-
posed a new, noniterative asymmetric synthesis of long-
chain 1,3-polyols starting from the now readily available
2,2′-methylenedifuran (1).8 The method imployed the
double [3+4]-cycloaddition of the 1,1,3-trichloro-2-oxyallyl
cation to 1. After reductive workup, a 45:55 mixture of
meso-2 and (()-threo-2 was obtained in 55% yield and
separated by fractional crystallizations. The meso com-
pound was converted into meso-3, which was desymme-
trized into diol (-)-4 by means of the Sharpless asym-
metric dihydroxylation.9 Further transformations im-
ploying the combinations of Evans’ anti10 and Nasaraka’s
(1) Omura, S, Tanaka, H. Macrolide Antibiotics: Chemistry, Biology,
and Pratice., Academic Press: New York, 1984. See also: Rychnovsky,
S. D.; Griesgraber, G.; Schlegel, R. J . Am. Chem. Soc. 1995, 117, 197.
Richardson, T. I.; Richardson, T. I.; Rychnovsky, S. D. J . Org. Chem.
1996, 61, 4219. Lipschutz, B. H.; Ullman, B.; Lindsley, C.; Recchi, S.;
Buzard, D. J .; Dickson, D. J . Org. Chem. 1998, 63, 6092. Pawlak, J .;
Sowinski, P., P.; Borowski, E.; Garibaldi, P. J . Antibiot. 1995, 48, 1034.
McGarvey, G. J .; Mathys, J . A.; Wilson, K. J .; Overly, K. O.; Buonova,
P. T.; Spours, P. G. J . Am. Chem. Soc. 1995, 60, 7778. Mukhopadhyay,
T.; Vijayakumar, E. K. S.; Nadkarni, S. R.; Fehlhaber, H.-W.; Kogler,
H.; Petry, S. J . Antibiot. 1998, 57, 582.
(2) See ref 2 and 3 of ref 8.
(3) For recent proposals, see, e.g.: Schneider, C. Angew. Chem., Int.
Ed. 1998, 37, 1375. Rychnovsky, S. D.; Fryszman, O.; Khine, U. R.
Tetrahedron Lett. 1999, 40, 41. Schneider, C.; Rehfeuter, M. Chem.
Eur. J . 1999, 5, 2850. J ørgensen, K. B.; Suenaga, T.; Nakata, T.
Tetrahedron Lett. 1999, 40, 8855. Enders, D.; Hundertmark, T.
Tetrahedron Lett. 1999, 40, 4169. Smith, A. B. III.; Pitram, S. M. Org.
Lett. 1999, 1, 2001. McGarvey, G. J .; Mathys, J . A.; Wilson, K. J .
Tetrahedron Lett. 2000, 41, 6011. Greer, P. B.; Donaldson, W. A.
Tetrahedron Lett. 2000, 41, 3801. Wender, P. A.; Lippa, B. Tetrahedron
Lett. 2000, 41, 1007. Kiegiel, J .; J o´zwik, J .; Wozniak, K.; J urczak, J .
Tetrahedron Lett. 2000, 41, 4959. Barrett, A. G. M.; Braddock, D. C.;
deKoning, P. D.; White, A. J . P.; Williams, D. J . J . Org. Chem. 2000,
65, 375. Sarraf, S. T.; Leighton, J . L. Org. Lett. 2000, 2, 1209. Zacuto,
M. J . Leighton, J . L. J . Am. Chem. Soc. 2000, 122, 8587. Kiyoota, S-i.;
Hena, M. A.; Yabukami, T.; Murai, K.; Goto, F. Tetrahedron Lett. 2000,
41, 7511.
(4) See, e.g.: Lautens, M.; Ma, S.; Yee, A. Tetrahedron Lett. 1995,36,
4185.
(5) See, e.g.: Lampe, T. F. J .; Hoffmann, H. M. R. J . Chem. Soc.,
Chem. Commun. 1996, 1931. Dunke, R.; Hoffmann, H. M. R. Tetra-
hedron 1999, 55, 8385. Dunkel, R.; Mentzel, M.; Hoffmann, H. M. R.
Tetrahedron 1997, 53, 13929.
(6) See also: Montan˜a, A. M.; Garcia, F.; Grima, P. M. Tetrahedron
1999, 40, 1375.
(7) Kaku, H.; Tanaka, M.; Norimine, Y.; Miyashita, Y.; Suemune,
H.; Sakai, K. Tetrahedron: Asymmetry 1997, 8, 195.
(8) Schwenter, M.-E.; Vogel, P. Chem. Eur. J . 2000, 6, 4091.
(9) Sharpless, K. B.; Kolb, H. C.; Van Nieuwenhze, M. S. Chem. Rev.
1994, 94, 2483.
(10) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J . Am. Chem.
Soc. 1988, 110, 3560.
(11) Nasaraka, K.; Pai, F. G. Tetrahedron Lett. 1984, 40, 2233. Chen,
K. N.; Hardtmann, G. E.; Prasad, K.; Repe`ic, O.; Shapiro, M. J .
Tetrahedron Lett. 1987, 28, 155.
(12) Mitsunobu, O. Synthesis 1981, 1.
(13) Structure confirmed by 3J (H-6,H-5) ) 7.4 Hz.
10.1021/jo010172u CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/24/2001