COMMUNICATIONS
Crystallographic Data Centre as supplementary publication no.
CCDC-162027. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax:
(44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
steric encumbrance at this site and the fact that an SN2-type
attack on the cyclopropyl carbon C(3) has to pass through a
highly strained transition structure.[15] The formation of
complex 20 from 18 also shows that the attack at least of
nitrogen nucleophiles on p-allylpalladium intermediates of
type 8 must be reversible.
In conclusion, this new three-component reaction bears a
significant combinatorial potential in that all three compo-
nents may be varied just as in the previously described domino
Heck ± Diels ± Alder sequence,[2] leading to a three-dimen-
sional library of small molecules.
[13] a) P. S. Manchand, H. S. Wong, J. F. Blount, J. Org. Chem. 1978, 43,
4769 ± 4774; b) D. P. Grant, N. W. Murrall, A. J. Welch, J. Organomet.
Chem. 1987, 333, 403 ± 414; c) C.-C. Su, J.-T. Chen, G.-H. Lee, Y. Wang,
J. Am. Chem. Soc. 1994, 116, 4999 ± 5000; d) P. von Matt, G. C. Lloyd-
Jones, A. B. E. Minidis, A. Pfaltz, L. Macko, M. Neuburger, M.
Zehnder, H. Rüegger, P. S. Pregosin, Helv. Chim. Acta 1995, 78, 265 ±
284.
[14] To the best of our knowledge this is the first structure analysis of a p-
allylpalladium complex with a primary ± tertiary unsymmetrically
substituted allyl ligand. Complexes with primary ± secondary allyl
ligands have previously been characterized. See: N. W. Murrall, A. J.
Welch, J. Organomet. Chem. 1986, 301, 109 ± 130.
Received: April 17, 2001 [Z16950]
[15] Y. I. Golꢁdfarb, L. I. Belenꢁkii, Russ. Chem. Rev. 1960, 29, 214 ± 235.
[1] a) K. Neuschütz, J. Velker, R. Neier, Synthesis 1998, 227 ± 255; b) L. F.
Tietze, Chem. Rev. 1996, 96, 115 ± 136.
[2] a) S. Bräse, A. de Meijere, Angew. Chem. 1995, 107, 2741 ± 2743;
Angew. Chem. Int. Ed. Engl. 1995, 34, 2545 ± 2547; b) A. de Meijere,
H. Nüske, M. Es-Sayed, T. Labahn, M. Schroen, S. Bräse, Angew.
Chem. 1999, 111, 3881 ± 3884; Angew. Chem. Int. Ed. 1999, 38, 3669 ±
3672.
[3] Bicyclopropylidene (1) is now easily accessible in three simple steps.
See: A. de Meijere, S. I. Kozhushkov, T. Späth, Org. Synth. 2000, 78,
142 ± 151.
Insertion Reactions of Nitriles into the P C
Bond of [(h1-C5Me5)P{W(CO)5}2]ÐA Novel
Approach to Phosphorus-Containing
Heterocycles**
[4] All new compounds were fully characterized by IR, MS, 1H NMR,
13C NMR, HRMS and/or elemental analysis.
[5] a) R. C. Larock, K. Takagi, Tetrahedron Lett. 1983, 24, 3457 ± 3460;
b) R. C. Larock, S. Varaprath, J. Org. Chem. 1984, 49, 3432 ± 3435.
[6] a) V. Farina, S. R. Baker, D. A. Benigni, C. Sapino, Jr., Tetrahedron
Michael Schiffer and Manfred Scheer*
Â
Lett. 1988, 29, 5739 ± 5742; b) M. Cavicchioli, D. Bouyssi, J. Gore, G.
Dedicated to Professor Dieter Sellmann
in occasion of his 60th birthday
Â
Balme, Tetrahedron Lett. 1996, 37, 1429 ± 1432; c) K. J. Szabo, Organo-
metallics 1996, 15, 1128 ± 1133.
[7] a) A. Stolle, J. Salaün, A. de Meijere, Synlett 1991, 327 ± 330; b) A.
Stolle, J. Ollivier, P. P. Piras, J. Salaün, A. de Meijere, J. Am. Chem.
Soc. 1992, 114, 4051 ± 4067.
In the thermal activation of [Cp*P{W(CO)5}2] (1; Cp* h1-
C5Me5), a Cp* migration from the P atom to the transition
metal atom occurs to form the highly reactive intermediate
[8] Representative procedure: 1-Cyclopropylidene-1-phenyl-2-morpholi-
nopropane (15i): Morpholine (14i) (261 mg, 3.00 mmol) was added to
a solution containing Pd(OAc)2 (11.2 mg, 50.0 mmol; 5 mol%), TFP
(23.2 mg, 100 mmol; 10 mol%), iodobenzene (2) (204 mg, 1.00 mmol),
and bicyclopropylidene (1) (160 mg, 2.00 mmol) in DMF (0.5 mL),
and the mixture was stirred for 1.5 h at 808C. After cooling to room
temperature, the solution was added to water (10 mL), the mixture
extracted with diethyl ether (5 Â 20 mL), and the combined organic
phases dried (MgSO4). After removal of the solvent in a rotatory
evaporator the residue was chromatographed on silica gel (25 g,
column 2 Â 20 cm, pentane/diethyl ether 5/1) to yield 15i (240 mg,
[Cp*(CO)2W P !W(CO)5] A.[1] The chemistry of this highly
ꢁ
reactive intermediate A offers promising synthetic routes to a
large variety of new phosphametallaheterocycles. Thus, the
trapping reaction of A with phosphaalkynes[1] and alkynes[2]
proceeds by formal [22] cycloaddition reactions to form
novel main group element transition metal cage compounds.
In continuation of these reactivity studies we attempted to
employ nitriles for trapping reactions of intermediate A.
Surprisingly, however, we observed insertion reactions into
the P C bond of the starting material.
99%) as a yellowish oil, Rf 0.55. IR (film): nÄ 3052, 2971, 2851, 2805
1
(C N), 1598, 1494, 1447, 1373, 1261, 1118, 1071, 926, 762, 698 cm
;
1H NMR (250 MHz, CDCl3): d 1.21 ± 1.43 (m, 4H; cPr-H), 1.28 (d,
3J 6.7 Hz, 3H; 3-H), 2.42 ± 2.63 (m, 4H; CH2NCH2), 3.58 (q, 3J
6.7 Hz, 1H; 2-H), 3.69 ± 3.78 (m, 4H; CH2OCH2), 7.23 (dd, 3J 7.0,
Insertion reactions of organonitriles into metal ± hydrogen
and metal ± carbon bonds are established processes.[3] Fur-
thermore, it is known that nitriles insert into the Mo Cl bond
3
4J 1.1 Hz, 1H; 4'-H), 7.32 (dd, 3J 7.0, J 7.2 Hz, 2H; 3'-H, 5'-H),
7.82 (dd, 3J 7.2, 4J 1.1 Hz, 2H; 2'-H, 6'-H); 13C NMR (62.9 MHz,
CDCl3, DEPT): d 2.74 ( , cPr-C), 3.74 ( , cPr-C), 15.77 (, C-3),
50.73 ( , C-2'', C-6''), 64.99 (, C-2), 67.36 ( , C-3'', C-5''), 123.76
(Cquat, cPr-C), 126.35 (, C-4'), 127.23 (, Ar-C), 127.77 (, Ar-C),
128.59 (Cquat, Ar-C), 139.99 (Cquat, C-1); MS (70 eV): m/z (%): 243 (12)
[5]
of MoCl5,[4] into the Zr O bond of [Cp2 Zr O], and into
*
E N bonds (E B,[6] Al,[7] P, [8] Pt[9]). Recently, Neumüller
et al. reported on CsX-catalyzed trimerization reactions of
acetonitrile with EMe3 (E element of Group 13) under
elimination of CH4 and formation of [Me2E{HNC(Me)}2-
[M ], 228 (5) [M
CH3], 198 (1) [M
C2H4O], 156 (1) [M
morpholine H], 128 (6) [M
morpholine C2H4], 114 (100)
[M
C6H5 C4H4]; elemental analysis calcd for (%) C16H21NO
(243.4) calcd: C 78.97, H 8.70, N 5.76; found: C 79.20, H 8.69, N 5.92.
[9] M. J. OꢁDonnell, X. Yang, M. Li, Tetrahedron Lett. 1990, 31, 5135 ±
5138.
[10] K. Voigt, A. Stolle, J. Salaün, A. de Meijere, Synlett 1995, 226 ± 228.
[11] a) R. Tamura, L. S. Hegedus, J. Am. Chem. Soc. 1982, 104, 3727 ± 3729;
[*] Prof. Dr. M. Scheer, Dr. M. Schiffer
Institut für Anorganische Chemie der Universität Karlsruhe
76128 Karlsruhe (Germany)
Fax : (49)721-608-7021
Ã
b) J. P. Genet, M. Balabane, J. E. Bäckvall, J. E. Nyström, Tetrahedron
[**] This work was supported by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie. M. Schiffer thanks the Fonds
der Chemischen Industrie for a PhD fellowship.
Lett. 1983, 24, 2745 ± 2748.
[12] Crystallographic data (excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
Angew. Chem. Int. Ed. 2001, 40, No. 18
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4018-3413 $ 17.50+.50/0
3413