ORGANIC
LETTERS
1999
Vol. 1, No. 5
709-711
Highly Selective Palladium-Catalyzed
Heck Reactions of Aryl Bromides with
Cycloalkenes
,†
,‡
Christian G. Hartung,† Klaus Ko1hler,* and Matthias Beller*
Anorganisch-chemisches Institut, Technische UniVersita¨t Mu¨nchen,
Lichtenbergstrasse 4, D-85747 Garching, Germany, and Institut fu¨r Organische
Katalyseforschung (IfOK) an der UniVersita¨t Rostock e.V., Buchbinderstrasse 5-6,
D-18055 Rostock, Germany
Received May 26, 1999
ABSTRACT
The influence of palladium catalysts and reaction conditions on the selectivity of Heck reactions of aryl bromides with cyclohexene and
cyclopentene has been investigated. It is shown that the addition of DMSO as a cosolvent leads to improved selectivities of nonconjugated
aryl olefins. On the other hand, high selectivities for conjugated arylcyclopentenes have been obtained with the catalytic system DMA/Na2-
CO /Pd2(dba)3‚dba/PCy3.
3
The palladium-catalyzed arylation and vinylation of alkenes
(Heck reaction) has become one of the most important and
powerful transition-metal-catalyzed transformations in or-
ganic synthesis for generating new carbon-carbon bonds.1
Nevertheless, the control of selectivity in Heck reactions still
causes problems; e.g., the coupling of aliphatic (e.g. 1-hex-
ene), 1,1-disubstituted, or cyclic olefins often generates a
mixture of double-bond regioisomers. As an example, the
intermolecular Heck reaction of cyclic alkenes with aryl
bromides does not yield one specific double-bond regioiso-
mer by using standard reaction conditions (125 °C, polar
aprotic solvent, NaOAc or NR3, PdX2/PAr3).2 In addition,
in most cases the Heck reaction of aryl halides and
cycloalkenes proceeds extremely slowly, and thus only low
yields of product are obtained.1c,3 Although aryl iodides or
triflates and aryl diazonium salts can be coupled with
cycloalkenes more efficiently,3,4 the reactions of economi-
cally more attractive aryl bromides with cycloalkenes require
elevated temperatures (>80 °C) and give isomeric mixtures.
In this paper a new procedure for the selective coupling of
(2) (a) Larock, R. C. Pure Appl. Chem. 1990, 62, 653. (b) Harrington,
O. J.; DiFiore, K. A. Tetrahedron Lett. 1987, 28, 495. (c) Andersson, C.-
M.; Hallberg, A.; Daves, G. D., Jr. J. Org. Chem. 1987, 52, 3529. (d) Lee,
T. D.; Daves, G. D., Jr. J. Org. Chem. 1983, 48, 399. (e) Arai, I.; Daves,
G. D., Jr. J. Org. Chem. 1979, 44, 21. (f) Tamaru, Y.; Yamada, Y.; Yoshida,
Z. Tetrahedron 1979, 35, 329. (g) Heck, R. F. Acc. Chem. Res. 1979, 12,
146. (h) Cortese, N. A.; Ziegler, C. B., Jr.; Hrnjez, B. J.; Heck, R. F. J.
Org. Chem. 1978, 43, 2953.
† Technische Universita¨t Mu¨nchen.
‡ Universita¨t Rostock e.V.
(1) (a) Beller, M.; Riermeier, T. H.; Stark, G. In Transition Metals for
Organic Synthesis; Beller, M., Bolm, C., Eds.; VCH: Weinheim, Germany,
1998; p 208. (b) Tsuji, J. Palladium Reagents and Catalysts; Wiley:
Chichester, U.K., 1995. (c) de Meijere, A.; Meyer, F. Angew. Chem. 1994,
106, 2473; Angew. Chem., Int. Ed. Engl. 1994, 33, 2379. (d) Heck, R. F.
In ComprehensiVe Organic Synthesis; Trost, B. M., Flemming, I., Eds.;
Pergamon Press: Oxford, U.K., 1991; Vol. 4, p 833.
(3) Larock, R. C.; Baker, B. E. U.S. Patent 4 879 426, 1988.
(4) (a) Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis
1997, 1338. (b) Larock, R. C.; Gong, W. H.; Baker, B. E. Tetrahedron
Lett. 1989, 30, 2603. (c) Larock, R. C.; Gong, W. H. J. Org. Chem. 1989,
54, 2047. (d) Larock, R. C.; Baker, B. E. Tetrahedron Lett. 1988, 29, 905.
(e) Kikukawa, K.; Nagira, K.; Wada, F.; Matsuda, T. Tetrahedron 1981,
37, 31.
10.1021/ol9901063 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/12/1999