8664 J . Org. Chem., Vol. 66, No. 25, 2001
Notes
reaction was hydrolyzed with a saturated aqueous solution of
NH4Cl (5 mL) and extracted with diethyl ether (3 × 10 mL).
The combined organic layers were dried (Na2SO4), filtered, and
concentrated in vacuo. The crude bis-epoxide 1 was examined
by 1H NMR to give a de ) 95%. The crude product was
chromatographed on silica gel, which was saturated with tri-
ethylamine (3/1 hexane/ethyl acetate) to provide pure bis-epoxide
67.5 (CH), 55.3 (CH2), 47.5 (CH2), 47.4 (CH), 46.6 (CH2); IR (neat)
1736. Anal. Calcd for C19H20ClNO2: C, 69.19; H, 6.11; N, 4.25.
Found: C, 69.05; H, 6.14; N, 4.30. HRMS Calcd for C19H20NO2-
Cl: 329.1182. Found: 329.1187.
(-)-(2S,3S,4S)-3-(Diben zyla m in o)-1-ch lor o-4,5-ep oxypen -
ta n -2-ol (16). This product was prepared following the procedure
to obtain 6, but starting from 15, and isolated as a yellowish
1 as a yellowish oil: Rf ) 0.35 (hexane/ethyl acetate 5/1); [R]22
oil: Rf ) 0.35 (hexane/ethyl acetate 3/1); [R]22 ) -2.4 (c 0.62,
D
D
1
) -2.9 (c 1.2, CHCl3); H NMR (CDCl3, 300 MHz) δ 7.44-7.22
CHCl3); 1H NMR (CDCl3, 200 MHz) δ 7.40-7.28 (10 H, m), 4.17-
4.03 (1 H, m), 3.89 (2 × 2 H, AB syst., J ) 13.3), 3.91-3.79 (2
H, m), 3.54 (1 H, dd, J ) 11.3, 6.7), 3.13 (1 H, ddd, J ) 6.7, 3.8,
(10 H, m), 3.96 (2 × 2 H, AB syst., J ) 13.7), 3.31-3.26 (1 H,
m), 3.14-3.10 (1 H, m), 2.78 (1 H, dd, J ) 5.1, 4.3), 2.71 (1 H,
dd, J ) 4.8, 4.0), 2.53 (1 H, dd, J ) 5.1, 2.8), 2.48 (1 H, dd, J )
5.1, 2.8), 2.27 (1 H, dd, J ) 7.7, 5.4); 13C NMR (CDCl3, 75 MHz)
δ 139.5 (C), 128.5, 128.0, and 126.8 (3 × CH), 62.0 (CH), 55.3
(CH2), 51.9 (CH), 50.0 (CH), 45.2 (CH2), 43.8 (CH2); IR (neat)
3064, 3029; MS, m/z 295.1 (M+, <1), 252.1 (83), 91.0 (100).
HRMS Calcd for C19H21NO2: 295.1572. Found: 295.1577. Anal.
Calcd for C19H21NO2: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.29;
H, 7.10; N, 4.68. Chiral HPLC analysis ee >98% (Chiralcel OD-
RH, UV detector 210 nm, 0.5 mL/min, 65/35 acetonitrile/water,
tR 17.6 min).
2.8), 2.99 (1 H, dd, J ) 4.9, 3.8), 2.73 (1 H, dd, J ) 4.9, 2.8); 13
C
NMR (CDCl3, 75 MHz) δ 137.9 (C), 128.5, 128.4, and 127.3 (3 ×
CH), 70.2 (CH), 61.5 (CH), 54.6 (CH2), 47.9 (CH), 47.5 (CH2),
46.1 (CH2); IR (neat) 3356 (br). HRMS Calcd for C19H22NO2Cl:
331.1339. Found: 331.1312.
(+)-(2S ,4S )-N ,N -D ib e n zy l-1,2:4,5-d ie p o x y p e n t a n -3-
a m in e (2). To a stirred solution of the amino alcohol 16 (0.33 g,
1 mmol) in CH2Cl2 (5 mL) was added NaH (0.24 g, 10 mmol).
After stirring at room temperaure for 1 h, the reaction was
carefully quenched with water (5 mL) and extracted with CH2-
Cl2 (3 × 10 mL). The combined organic layers were dried (Na2-
SO4), filtered, and concentrated in vacuo. The crude bis-epoxide
2 was examined by 1H NMR to give a de ) 95%. The product
was chromatographed on silica gel, which was saturated with
triethylamine, (3/1 hexane/ethyl acetate) to provide pure bis-
epoxide 2 as a yellowish oil: [R]22D ) +3.2 (c 0.73, CHCl3). Chiral
HPLC analysis ee >98% (Chiralcel OD-RH, UV detector 210 nm,
0.5 mL/min, 65/35 acetonitrile/water, tR 13.2 min).
Gen er a l P r oced u r e for Rin g Op en in g of th e Am in o
Ep oxid es 7 a n d 12. To a solution of the corresponding amino
epoxide 7 or 12 (0.5 mmol) and LiClO4 (0.05 g, 0.5 mmol) in
acetonitrile (1 mL) was added the corresponding amine (0.6
mmol), and the reaction mixture was stirred at room tempera-
ture. The reaction was followed by TLC. Then, water was added
and the mixture was extracted with diethyl ether (3 × 5 mL).
Removal of the solvents followed by purification by flash column
chromatography over silica gel (1/1 hexane/ethyl acetate) pro-
vided pure compounds 17 and 18, as pale yellow oils.
(+)-(2S)-2-{1′(S)-(Diben zyla m in o)-2′-[(ter t-bu tyld im eth -
ylsila n yl)oxy]eth yl}oxir a n e (11). This product was prepared
following the procedure to obtain 1, but starting from 10 instead
of 9, and the epoxide 11 was isolated as a pale yellow oil. The
crude epoxide 11 was examined by 1H NMR to give a de ) 95%:
Rf ) 0.48 (hexane/ethyl acetate 10/1); [R]22 ) +16.6 (c 1.08,
D
CHCl3); 1H NMR (CDCl3, 300 MHz) δ 7.49-7.26 (10 H, m), 3.98-
3.85 (6 H, m), 3.21-3.17 (1 H, m), 2.80 (1 H, dd J ) 5.3, 4.3),
2.71-2.65 (1 H, m), 2.60 (1 H, dd, J ) 5.3, 2.7), 1.02 (9 H, s),
0.16 (6 H, s); 13C NMR (CDCl3, 75 MHz) δ 140.0 (C), 128.3, 127.9,
and 126.6 (3 × CH), 60.8 (CH2), 60.2 (CH), 55.0 (CH2), 50.7 (CH),
45.7 (CH2), 25.7 (CH3), 17.9 (C), -5.7 (CH3), -5.8 (CH3); IR (neat)
3062, 3028; MS, m/z 397.2 (M+, <1), 354.2 (10), 252.1 (100), 91.0
(89). HRMS Calcd for C24H35NO2Si: 397.2437. Found: 397.2442.
(-)-(2S)-2-[1′(S)-(Dib en zyla m in o)-2′-h yd r oxiet h yl]ox-
ir a n e (12). This product was prepared following the procedure
to synthesize 8, but starting from 11. The amino epoxide 12 was
isolated as a yellowish oil: Rf ) 0.23 (hexane/ethyl acetate 3/1);
[R]22 ) -43.8 (c 0.60, CHCl3); 1H NMR (CDCl3, 200 MHz) δ
(+)-(2S,3S)-3-(Diben zyla m in o)-4-[(ter t-bu tyld im eth ylsi-
D
7.36-7.26 (10 H, m), 3.89 (2 × 2 H, AB syst., J ) 13.6), 3.79-
3.69 (1 H, m), 3.63 (1 H, dd, J ) 11.0, 5.1), 3.18 (1 H, ddd, J )
5.4, 4.9, 2.6), 2.86 (1 H, dd, J ) 4.9, 4.6), 2.86-2.76 (1 H, m),
2.61 (1 H, dd, J ) 4.6, 2.6); 13C NMR (CDCl3, 50 MHz) δ 138.8
(C), 128.6, 128.4, and 127.2 (3 × CH), 59.5 (CH), 58.2 (CH2),
54.2 (CH2), 49.0 (CH), 45.1 (CH2); IR (neat) 3425 (br). Anal. Calcd
for C18H21NO2: C, 76.29; H, 7.47; N, 4.94. Found: C, 75.98; H,
7.59; N, 4.81.
la n yl)oxi]-1-p r op yla m in obu ta n -2-ol (17). Rf ) 0.20 (ethyl
acetate); [R]22 ) +13.3 (c 0.75, CHCl3); 1H NMR (CDCl3, 300
D
MHz) δ 7.45-7.26 (10 H, m), 3.95-3.83 (3 H, m), 3.87 (2 × 2 H,
AB syst., J ) 13.5), 2.83-2.46 (2 H, m), 2.62-2.46 (3 H, m),
1.55-1.43 (2 H, m), 1.02 (9 H, s), 0.92 (3 H, t, J ) 7.2), 0.18 (6
H, s); 13C NMR (CDCl3, 75 MHz) δ 139.2 (C), 129.1, 128.3, and
127.0 (3 × CH), 66.7 (CH), 61.5 (CH), 59.8 (CH2), 54.5 (CH2),
53.0 (CH2), 51.5 (CH2), 25.8 (CH3), 22.6 (CH2), 18.0 (C), 11.6
(CH3), -5.6 (CH3), -5.7 (CH3); IR (neat) 3364 (br). HRMS Calcd
for C27H44Si N2O2: 456.3172. Found: 456.3153.
(2S, 3S)-2-(Diben zyla m in o)-3,4-ep oxybu ta n a l (13). This
product was prepared following the procedure to prepare 9, but
starting from 12, and isolated as an orange oil. Due to instability
of the epoxyaldehyde 13, it was characterized by NMR spec-
troscopy: 1H NMR (CDCl3, 200 MHz) δ 9.79 (1 H, s), 7.48-7.27
(10 H, m), 3.99 (2 × 2 H, AB syst., J ) 13.8), 3.32 (1 H, ddd, J
) 5.4, 3.8, 2.8), 3.17 (1 H, d, J ) 5.4), 2.88 (1 H, dd, J ) 4.9,
3.8), 2.66 (1 H, dd, J ) 4.9, 2.8); 13C NMR (CDCl3, 50 MHz) δ
200. 9 (C), 138.3 (C), 128.3, 128.2, and 127.2 (3 × CH), 67.5 (CH),
55.2 (CH2), 48.1 (CH), 44.5 (CH2).
(2R, 3S, 4S)-3-(Diben zyla m in o)-1-ch lor o-4,5-ep oxyp en -
ta n -2-ol (14). This product was prepared following the procedure
to obtain 5, but starting from 13. The crude chlorohydrin 14 was
used without further purification: 1H NMR (CDCl3, 200 MHz)
δ 7.44-7.18 (10 H, m), 4.24-4.19 (1 H, m), 3.84 (2 × 2 H, AB
syst., J ) 14.0), 3.81-3.75 (2 H, m), 3.36 (1 H, ddd, J ) 7.4, 4.4,
2.8), 2.88 (1 H, dd, J ) 5.1, 4.4), 2.68 (1 H, dd, J ) 5.1, 2.8), 2.44
(1 H, dd, J ) 7.4, 6.0); 13C NMR (CDCl3, 75 MHz) δ 138.8 (C),
128.4, 128.2, and 127.0 (3 × CH), 71.4 (CH), 61.2 (CH), 55.1
(CH2), 48.9 (CH), 48.6 (CH2), 45.5 (CH2).
(-)-(2S,3R)-2-(Diben zyla m in o)-4-ben zyla m in obu ta n -1,3-
d iol (18). Rf ) 0.14 (ethyl acetate); [R]22D ) -6.6 (c 0.44, CHCl3);
1H NMR (CDCl3, 300 MHz) δ 7.42-7.26 (15 H, m), 4.02-3.94 (2
H, m), 3.91 (1 H, dd, J ) 11.4, 6.3), 3.72 (2 H, s), 3.71 (2 × 2 H,
AB syst., J ) 13.7), 2.88 (1 H, dd, J ) 12.2, 3.7), 2.66-2.56 (2
H, m); 13C NMR (CDCl3, 75 MHz) δ 139.4 (C), 139.2 (C), 128.7,
128.3, 128.2, 128.1, 127.1, and 126.9 (6 × CH), 69.0 (CH), 60.5
(CH), 58.9 (CH2), 54.5 (CH2), 53.4 (CH2), 52.1 (CH2); IR (neat)
3368 (br). Anal. Calcd for C25H30N2O2: C, 76.89; H, 7.74; N, 7.17.
Found: C, 76.71; H, 7.82; N, 7.15. HRMS Calcd for
C
25H30N2O2: 390.2307. Found: 390.2231.
(+)-(S)-N,N-Diben zyl-1-[(ter t-bu tyld im eth ylsila n yl)oxy]-
bu t-3-en -2-a m in e (19). To a -78 °C stirred solution of the
R-amino aldehyde 10 (0.39 g, 1.02 mmol) and chloroidomethane
(0.22 mL, 3.06 mmol) in dry THF (5 mL) was added methyl-
lithium (2.0 mL of 1.5M solution in diethyl ether, 3.06 mmol)
dropwise over 5 min. After stirring at -78 °C for 30 min, lithium
powder (0.07 g, 10.2 mmol) was added and the reaction mixture
was stirred at for 8 h -40 °C. The reaction was hydrolyzed with
ice, and after the usual workup, crude allylamine 19 was
obtained. Flash column chromatography over silica gel (20/1
hexane/ethyl acetate) provided pure allylamine 19 as a pale
(+)-(3S, 4S)-3-(Diben zyla m in o)-1-ch lor o-4,5-ep oxyp en -
ta n -2-on e (15). This product was prepared by oxidation of 14
following the procedure to prepare 9, and isolated as an orange
oil: Rf ) 0.36 (hexane/ethyl acetate 5/1); [R]22 ) +36.4 (c 0.70,
D
CHCl3); 1H NMR (CDCl3, 300 MHz) δ 7.42-7.27 (10 H, m), 4.34
(2 H, AB syst., J ) 16.4) 3.87 (2 × 2 H, AB syst., J ) 14.0), 3.37
(1 H, ddd, J ) 8.3, 3.5, 2.6), 3.03 (1 H, d, J ) 8.3), 2.96 (1 H, dd,
J ) 5.2, 3.5), 2.62 (1 H, dd, J ) 5.2, 2.6); 13C NMR (CDCl3, 75
MHz) δ 200.3 (C), 138.0 (C), 128.5, 128.4, and 127.5 (3 × CH),
yellow oil: Rf ) 0.29 (hexane/ethyl acetate 20/1); [R]22 ) +5.5
D
(c 1.00, CHCl3); 1H NMR (CDCl3, 300 MHz) δ 7.50-7.26 (10 H,
m), 5.95 (1 H, ddd, J ) 17.4, 10.5, 6.5), 5.38 (1 H, d, J ) 10.5),
5.26 (1 H, d, J ) 17.4), 3.83 (2 H, dd, J ) 10.4, 6.5), 3.77 (2 × 2
H, AB syst., J ) 14.3), 3.32 (1 H, q, J ) 6.5), 0.97 (9 H, s), 0.09