12426
J. Am. Chem. Soc. 2001, 123, 12426-12427
Scheme 1
Total Synthesis of (+)-Zampanolide
Amos B. Smith, III,* Igor G. Safonov, and R. Michael Corbett
Department of Chemistry, UniVersity of PennsylVania
Philadelphia, PennsylVania 19104
ReceiVed September 24, 2001
In 1996 Tanaka and Higa reported the isolation, partial structure
elucidation, and biological activity of (-)-zampanolide, an
architecturally novel macrolide from the Okinawan sponge
Fasciospongia rimosa (Scheme 1).1 Key structural elements
include the highly unsaturated framework and the uncommon
N-acyl hemiaminal side chain.2 Adding to the structural complex-
ity, only the relative stereochemistry between C(11), C(15), and
C(19) had been assigned. Although the extreme scarcity of (-)-
zampanolide precluded a comprehensive evaluation of the bio-
logical profile, the impressive cytotoxicity against P388, HT29,
A549, and MEL28 cell lines (IC50 1-5 ng/mL), in conjunction
with the interesting architecture, prompted us to launch a synthetic
program targeting this metabolite. Herein, we disclose the first
total synthesis and tentative stereochemical assignment of the
nonnaturally occurring antipode, (+)-zampanolide (1).
Scheme 2
Retrosynthetically, disconnections of 1 at the amide, the
macrolide, and the C(2-3), C(8-9), and C(17-18) linkages gave
rise to fragments C(3-8) A, C(9-17) B, C(18-20) C, and C(1′-
6′) D. In the forward direction, we envisioned construction of
the macrolide via Kocienski-Julia olefination3 of aldehyde A with
sulfone B, followed in turn by nucleophilic opening of epoxide
C with a higher-order cuprate4 derived from AB, incorporation
of a C(1-2) acyl phosphonate, and intramolecular Horner-
Emmons macrocyclization.5 Highlights of the closing stage of
the synthesis would then entail installation of the N-acyl hemi-
aminal moiety via a stereospecific Curtius rearrangement6 of
R-alkoxy acid 2 followed by acylation with acid chloride D.
To assemble fragment B we elected the Petasis-Ferrier
rearrangement,7 recently established in our laboratory as a
powerful, stereocontrolled entry to cis-2,6-disubstituted tetrahy-
dropyrans.8 Toward this end, Brown asymmetric allylation9 of
aldehyde 310 (Scheme 2) followed in turn by TES protection of
the hydroxyl and ozonolysis afforded (+)-4, which upon oxida-
tion11 and desilylation led to â-hydroxy acid (-)-5 (57% yield,
five steps). Bis-silylation12 followed by union with (2E)-3-
Scheme 3
(1) Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535. (b) For a related
structure see: Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus,
C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.
(2) For other natural products possessing the N-acyl hemiaminal functional-
ity, see: (a) Benz, F.; Knu¨sel, F.; Nu¨esch, J.; Treichler, H.; Voser, W.; Nyfeler,
R.; Keller-Schierlein, W. HelV. Chim. Acta 1974, 57, 2459. (b) Umezawa,
H.; Kondo, S.; Iinuma, H.; Kunimoto, S.; Ikeda, Y.; Iwasawa, H.; Ikeda, D.;
Takeuchi, T. J. Anitibiot. 1981, 34, 1622.
bromobut-2-enal13 promoted by TMSOTf 14 furnished dioxanone
(+)-6 in 82% overall yield [10:1 at C(15)]. Methylenation with
the Petasis-Tebbe reagent15 then furnished the corresponding enol
ethers [72% yield, 6:1 at C(15)], which upon treatment with
Me2AlCl8 underwent the desired Petasis-Ferrier rearrangement7
to deliver cis-pyranone (+)-7 in 59% yield.16 Ketone methylena-
tion, desilylation, incorporation of the thiotetrazole via Mitsunobu
reaction,17 and oxidation18 proceeded smoothly to afford sulfone
(-)-B (62% yield, 4 steps).
(3) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett
1998, 26.
(4) (a) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.; Nguyen, S. L.;
McCarthy, K. E. J. Organomet. Chem. 1985, 285, 437. (b) Smith, A. B., III;
Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull, K. G.; Iwashima, M.; Qiu,
Y.; Spoors, P. G.; Bertounesque, E.; Salvatore, B. A. J. Org. Chem. 1998,
63, 7596.
(5) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. R. J. Am. Chem. Soc. 1982,
104, 2030.
(6) (a) Roush, W. R.; Marron, T. G. Tetrahedron Lett. 1993, 34, 5421. (b)
Hoffmann, R. W.; Schlapbach, A. Tetrahedron Lett. 1993, 34, 7903.
(7) Petasis, N. A.; Lu, S.-P. Tetrahedron Lett. 1996, 37, 141.
(8) Smith, A. B., III; Verhoest, P. V.; Minbiole, K. P.; Schelhaas, M. J.
Am. Chem. Soc. 2001, 123, 4834 and references therein.
(9) Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307.
(10) Boeckman, R. K., Jr.; Charette, A. B.; Asberom, T.; Johnston, B. H.
J. Am. Chem. Soc. 1987, 109, 7553.
Construction of subunits A and C was achieved as outlined in
Scheme 3.19 Noteworthy is the stereoselective20 installation of
the C(4-5) olefin in subtarget A.
With the requisite subtargets in hand, assembly of the macrolide
began with the Kocienski-modified3 Julia olefination21 of aldehyde
(13) Prepared by oxidation of (2E)-3-bromobut-2-enol with PCC in 79%
yield. For preparation of the latter see: Corey, E. J.; Bock, M. G.; Kozikowski,
A. P.; Rama Rao, A. V.; Floyd, D.; Lipshutz, B. Tetrahedron Lett. 1978, 19,
1051.
(14) Seebach, D.; Imwinkelried, R.; Stucky, G. HelV. Chim. Acta 1987,
70, 448.
(11) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
(12) Harada, T.; Yoshida, T.; Kagamihara, Y.; Oku, A. J. Chem. Soc.,
Chem. Commun. 1993, 1367.
10.1021/ja012220y CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/14/2001