Scandium Ion-Promoted Oxidation of Fullerenes
J. Am. Chem. Soc., Vol. 123, No. 50, 2001 12459
cation produced by photoinduced electron transfer from biphenyl
to photosensitizers.11-13 In this process, the primary acceptor
is excited and abstracts an electron from the biphenyl donor.
The longer lifetime of the generated biphenyl radical cation
enables the occurrence of an electron transfer from C60 to
the electron-transfer oxidation reactivities of fullerenes, higher
fullerenes, or their functionalized derivatives.
The use of an appropriate metal ion which can accelerate
electron-transfer reactions may remove the need of very strong
oxidants to accomplish the electron-transfer oxidation of
fullerenes. In the presence of such a metal ion, photoinduced
electron-transfer reactions, which would otherwise be unlikely
to occur, are reported to proceed efficiently.23,24 We have
recently reported that scandium triflate [Sc(OTf)3] acts as the
strongest Lewis acid which can effectively accelerate the
electron-transfer reactions of oxygen and p-benzoquinone.25
produce C60 .
•+ 11 Various polycyclic arene π-radical cations can
also be produced by pulse radiolysis, and the electron-transfer
oxidation of fullerenes by these radical cations has been
reported.14 The oxidation of the triplet excited state of C60
(3C60*) has also been studied by using strong electron acceptors
such as tetracyano-p-quinodimethane (TCNQ),15 tetracyanoet-
hylene (TCNE),16 and p-chloranil17 in photolysis experiments
of the oxidative quenching of triplet excited fullerenes. In
general, very fast quenching reactions of the triplet states of
fullerenes are reported in the presence of these electron
acceptors, but these processes are not accompanied by a
separation of the free radical pairs. A triplet “exciplex” formation
has been proposed as a possible mechanism in most cases. Only
in the case of a strong oxidant (TCNE) is the exciplex considered
as an ion-radical pair.18 Such a limitation of oxidants has
precluded a detailed study of electron-transfer oxidation of the
triplet excited states of fullerenes and derivatives. Although the
oxidation of fullerenes typically becomes easier upon deriva-
tization,19 the radical cations of derivatized fullerenes have yet
to be characterized. The ionization energies of higher fullerenes
are also theoretically suggested to decrease with the cage
size.20,21 This has been shown experimentally by measurements
of these compounds using photoionization, photoelectron spec-
troscopy, and the ion-molecular equilibria-Knudsen cell mass
spectrometry.21,22 However, there has so far been no report on
We report herein that an efficient photoinduced electron
transfer from the triplet excited state of C60 to p-chloranil and
p-benzoquinone occurs in the presence of Sc(OTf)3 in benzoni-
trile (PhCN) to produce C60 radical cation which has a diagnostic
NIR (near-infrared) absorption band at 980 nm. The promoting
effect of Sc(OTf)3 is compared with the results for an electron
transfer from CoTPP (TPP2- ) tetraphenylporphyrin dianion)
to p-benzoquinone in PhCN. With regard to the derivatized
fullerenes, a series of dibenzyl derivatives of C60 were synthe-
sized by the reactions of C602- with alkyl halides.26,27 We then
systematically generated the radical cations of C60, C70, and their
derivatives produced by the Sc3+-promoted electron transfer
from the fullerene triplet excited states to p-chloranil. The
electron-transfer oxidation reactivities of a series of fullerenes
were determined for the first time and they are compared with
the HOMO (highest occupied molecular orbital) levels of the
fullerenes.
Experimental Section
(11) Nonell, S.; Arbogast, J. W.; Foote, C. S. J. Phys. Chem. 1992, 96,
4169.
(12) Lem, G.; Schuster, D. I.; Courtney, S. H.; Lu, Q.; Wilson, S. R. J.
Am. Chem. Soc. 1995, 117, 554.
(13) (a) Siedschlag, C.; Luftmann, H.; Wolff, C.; Mattay, J. Tetrahedron
1997, 53, 3587. (b) Siedschlag, C.; Luftmann, H.; Wolff, C.; Mattay, J.
Tetrahedron 1999, 55, 7805.
(14) (a) Guldi, D. M.; Asmus, K.-D. J. Am. Chem. Soc. 1997, 119, 5744.
(b) Guldi, D. M.; Neta, P.; Asmus, K.-D. J. Phys. Chem. 1994, 98, 4617.
(15) (a) Nadtochenko, V. A.; Denisov, N. N.; Rubtsov, I. V.; Lobach,
A. S.; Moravskii, A. P. Chem. Phys. Lett. 1993, 208, 431. (b) Nadtochenko,
V. A.; Vasil’ev, I. V.; Denisov, N. N.; Rubtsov, I. V.; Lobach, A. S.;
Moravskii, A. P.; Shestakov, A. F. J. Photochem. Photobiol. A 1993, 70,
153. (c) Nadtochenko, V. A.; Denisov, N. N.; Rubtsov, I. V.; Lobach, A.
S.; Moravsky, A. P. Russ. Chem. Bull. 1993, 42, 1171. (d) Nadtochenko,
V. A.; Denisov, N. N.; Lobach, A. S.; Moravskii, A. P. Zh. Fiz. Khim.
1994, 68, 228.
(16) (a) Steren, C. A.; Van Willigen, H. Proc. Indian Acad. Sci., Chem.
Sci. 1994, 106, 1671. (b) Michaeli, S.; Meiklyar, V.; Schulz, M.; Mo¨bius,
K.; Levanon, H. J. Phys. Chem. 1994, 98, 7444. (c) Steren, C. A.; Levstein,
P. R.; van Willigen, H.; Linschitz, H.; Biczok, L. Chem. Phys. Lett. 1993,
204, 23.
Materials. C60 (1) (>99.95% pure) and C70 (7) (>99.95% pure)
were purchased from Science Laboratories Co., Ltd., Japan, and used
as received. Benzonitrile (PhCN) was purchased from Wako Pure
Chemical Ind. Ltd., Japan, and distilled over P2O5 prior to use.28
p-Benzoquinone and p-chloranil were obtained commercially and
purified by the standard method.28 Dimeric 1-benzyl-1,4-dihydronico-
tinamide [(BNA)2] was prepared according to literature procedures.29
Scandium trifluoromethanesulfonate, Sc(OTf)3 (99%, FW ) 492.16)
was obtained from Pacific Metals Co., Ltd. (Taiheiyo Kinzoku). Cobalt-
(II) tetraphenylporphyrin, CoTPP, was prepared as described in the
literature.30 The examined 1,4-R2C60 derivatives (2-6) [R ) 4-BrC6H4-
CH2 (2), 3-BrC6H4CH2 (3), 2-BrC6H4CH2 (5), and C6H5CH2 (6)] and
1,4-(But)(C6H5CH2)C60 (4) were prepared by a reaction of electrogen-
erated C60 with RBr as described previously.26,27 The C60-N-
2-
methylpyrrolidine derivative (8)31 was synthesized according to literature
procedures. To eliminate the problem of multiple isomers in function-
alized C70, [1,9]methaofullerene[70] carboxylic acid was prepared
selectively according to literature procedures.32 Condensation of [1,9]-
(17) (a) Steren, C. A.; van Willigen, H.; Biczo´k, L.; Gupta, N.; Linschitz,
H. J. Phys. Chem. 1996, 100, 8920. (b) Michaeli, S.; Meiklyar, V.;
Endeward, B.; Mo¨bius, K.; Levanon, H. Res. Chem. Intermed. 1997, 23,
505.
(18) Fujitsuka, M.; Watanabe, A.; Ito, O.; Yamamoto, K.; Funasaka, H.
J. Phys. Chem. A 1997, 101, 7960.
(23) Fukuzumi, S.; Itoh, S. In AdVances in Photochemistry; Neckers, D.
C., Volman, D. H., von Bu¨nau, G., Eds.; Wiley: New York, 1998; Vol.
25, pp 107-172.
(24) Fukuzumi, S. In Electron Transfer in Chemistry; Balzani, V., Ed.;
Wiley-VCH: Weinheim, 2001; Vol. 4, pp 3-67.
(19) (a) Boudon, C.; Gisselbrecht, J.-P.; Gross, M.; Herrmann, A.;
Ru¨ttimann, M.; Crassous, J.; Cardullo, F.; Echegoyen, L.; Diederich, F. J.
Am. Chem. Soc. 1998, 120, 7860. (b) Suzuki, T.; Maruyama, Y.; Akasaka,
T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1994, 116,
1359. (c) Zhou, J.; Rieker, A.; Grosser, T.; Skiebe, A.; Hirsch, A. J. Chem.
Soc., Perkin Trans. 2 1997, 1. (d) Cardullo, F.; Seiler, P.; Isaacs, L.;
Nierengarten, J.-F.; Haldimann, R. F.; Diederich, F.; Mordasini-Denti, T.;
Thiel, W.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M. HelV. Chim. Acta
1997, 80, 343.
(20) (a) Cioslowski, J.; Raghavachari, K. J. Chem. Phys. 1993, 98, 8734.
(b) Nagase, S.; Kobayashi, K. J. Chem. Soc., Chem. Commun. 1994, 1837.
(c) Seifert, G.; Vietze, K.; Schmidt, R. J. Phys. B 1996, 29, 5183.
(21) Boltalina, O. V.; Ioffe, I. N.; Sidorov, L. N.; Seifert, G.; Vietze, K.
J. Am. Chem. Soc. 2000, 122, 9745.
(25) Fukuzumi, S.; Ohkubo, K. Chem. Eur. J. 2000, 6, 4532.
(26) (a) Subramanian, R.; Kadish, K. M.; Vijayashree, M. N.; Gao, X.;
Jones, M. T.; Miller, M. D.; Krause, K. L.; Suenobu, T.; Fukuzumi, S. J.
Phys. Chem. 1996, 100, 16327. (b) Fukuzumi, S.; Suenobu, T.; Gao, X.;
Kadish, K. M. J. Phys. Chem. A 2000, 104, 2908. (c) Kadish, K. M.; Gao,
X.; Van Caemelbecke, E.; Hirasaka, T.; Suenobu, T.; Fukuzumi, S. J. Phys.
Chem. 1998, 102, 3898.
(27) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K.
M. J. Am. Chem. Soc. 1998, 120, 9220.
(28) Perrin, D. D.; Armarego, W. L. F. Purifiction of Laboratory
Chemicals; Butterworth-Heinemann: Oxford, 1988.
(29) Wallenfels, K.; Gellerich, M. Chem. Ber. 1959, 92, 1406.
(30) Adler, A. D.; Longo, F. R.; Va´radi, V. Inorg. Synth. 1976, 16, 213.
(31) Imahori, H.; Ozawa, S.; Ushida, K.; Takahashi, M.; Azuma, T.;
Ajavakom, A.; Akiyama, T.; Hasegawa, M.; Taniguchi S.; Okada, T.;
Sakata, Y. Bull. Chem. Soc. Jpn. 1999, 72, 485.
(22) Shimoyama, I.; Nakagawa, K.; Katoh, R. J. Electron Spectrosc.
Relat. Phenom. 1996, 78, 461.