1652
T. Matsumoto et al.
LETTER
(7) Data for selected compounds follow; 5: Mp 177–178 °C
(colorless needles; hexane–ether); 1H NMR (CDCl3) 4.92
(dd, 2 H, J = 4.6, 11.2 Hz), 2.52 (d, 2 H, J = 2.7 Hz), 2.12 (s,
6 H), 2.05 (t, 1 H, J = 2.7 Hz), 1.5-2.0 (m, 6 H); 13C NMR
(CDCl3) 169.8, 78.5, 74.2, 73.5, 71.6, 25.7, 25.2, 21.1,
19.2; IR (KBr) 3471, 2120, 1738, 1712 cm-1; Anal. calcd for
C13H18O5: C, 61.40; H, 7.14. Found: C, 61.63; H, 7.36. (+)-
4: Mp 98.5–99.0 °C (colorless needles; hexane–ether);
[ ]28D +6.6 (c 1.5, CHCl3); 1H NMR (CDCl3) 4.90 (dd, 1
H, J = 4.6, 11.6 Hz), 3.71 (ddd, 1 H, J = 4.9, 8.1, 11.2 Hz),
2.68 (dd, 1 H, J = 2.6, 16.8 Hz), 2.60 (dd, 1 H, J = 2.6, 16.8
Hz), 2.50 (s, 1 H), 2.38 (d, J = 8.1 Hz), 2.11 (s, 3 H), 2.06 (t,
1 H, J = 2.6 Hz), 1.5-1.9 (m, 6 H); 13C NMR (CDCl3)
170.1, 79.6, 74.7, 74.0, 71.3, 71.0, 29.3, 25.7, 25.0, 21.1,
19.3; IR (KBr) 3466, 2114, 1734, 1706 cm-1; Anal. calcd for
C11H16O4: C, 62.25; H, 7.60. Found: C, 62.39; H, 7.71. (–)-
11: Mp 92.5–93.0 °C (colorless needles; hexane); [ ]27D –41
(c 1.6, CHCl3); 1H NMR (CDCl3) 5.01 (dd, 1 H, J = 3.7,
9.0 Hz), 4.31 (t, 1 H, J = 2.9 Hz), 2.64 (dd, 1 H, J = 2.7, 16.8
Hz), 2.43 (dd, 1 H, J = 2.7, 16.8 Hz), 2.05 (s, 3 H), 1.99 (t, 1
H, J = 2.7 Hz), 1.5-1.9 (m, 6 H), 1.48 (s, 3 H), 1.38 (s, 3 H);
13C NMR (CDCl3) 170.5, 108.7, 79.5, 79.1, 78.5, 71.5,
71.3, 27.4, 26.8, 26.2, 24.1, 23.1, 21.4, 14.9; IR (KBr) 3265,
2118, 1740 cm-1; Anal. calcd for C14H20O4: C, 66.12; H,
7.93. Found: C, 66.24; H, 8.10.
OH
OH
CALa
OAc
AcO
AcO
AcO
OH
30 °C, 24 h
91% yield
(+)-6, >99% e.e.
13
OH
OH
OH
CALa
AcO
OAc
30 °C, 5 h
quant.
(–)-7, >99% e.e.
14
a) 20 wt% based on the substrate.
Scheme 4
References and Notes
(1) (a) Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno,
M. Tetrahedron 1970, 26, 5171. (b) See also: Sekizawa, R.;
Inuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T.;
Yamaizumi, J.; Umezawa, K. J. Antibiot. 1996, 49, 487.
(2) (a) Matsumoto, T.; Yamaguchi, H.; Hamura, T.; Tanabe, M.;
Kuriyama, Y.; Suzuki, K. Tetrahedron Lett. 2000, 41, 8383.
(b) Yamaguchi, H.; Konegawa, T.; Tanabe, M.; Nakamura,
T.; Matsumoto, T.; Suzuki, K. Tetrahedron Lett. 2000, 41,
8389. (c) Matsumoto, T.; Yamaguchi, H.; Tanabe, M.;
Yasui, Y.; Suzuki, K. Tetrahedron Lett. 2000, 41, 8393.
(3) For a review on enantioselective synthesis through
enzymatic asymmetrization, see: Schoffers, E.;
(8) Column: CP-Chirasil Dex CB (GL Sci. Inc.), 0.32 mm 30
m; Conditions: 130 °C for 5 min then +12.5 °C/min to
140 °C, He 180 kPa; Retention time: 6.2 min for (–)-11 and
6.4 min for (+)-11.
(9) We express deep appreciation to Ms. Sachiyo Kubo, Tokyo
Institute of Technology, for X-ray analysis.
Golebiowski, A.; Johnson, C. R. Tetrahedron 1996, 52,
3769.
(10) (a) Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A.
T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656. (b) Cygler,
M.; Grochulski, P.; Kazlauskas, R. J.; Schrag, J. D.;
Bouthillier, F.; Rubin, B.; Serreqi, A. N.; Gupta, A. K. J. Am.
Chem. Soc. 1994, 116, 3180. (c) Bornscheuer, U. T.;
Kazlauskas, R. J. Hydrolyses in Organic Synthesis; Wiley-
VCH: Weinheim, 1999. (d) For examples of the CAL-
mediated reactions of cyclic secondary alcohol derivatives,
see: Johnson, C. R.; Sakaguchi, H. Synlett 1992, 813.
(e) Orrenius, C.; Norin, T.; Hult, K.; Carrea, G. Tetrahedron:
Asymmetry 1995, 3023. (f) See also, ref. 4c.
(11) (a) A review on the application of Candida antarctica lipase
in organic synthesis:Anderson, E. M.; Larsson, K. M.; Kirk,
O. Biocatal. Biotransform. 1998, 16, 181. (b) For an
example of CAL-mediated asymmetrization of meso
compounds, see ref. 4c.
(4) Selected examples of enzymatic hydrolysis of the related
meso compounds: (a) Eberle, M.; Egli, M.; Seebach, D.
Helv. Chim. Acta 1988, 71, 1. (b) Carda, M.; Van der
Eycken, J.; Vandewalle, M. Tetrahedron: Asymmetry 1990,
1, 17. (c) Johnson, C. R.; Bis, S. J. Tetrahedron Lett. 1992,
33, 7287. (d) Renouf P., Poirier J.-M., Duhamel P.; J. Chem.
Soc., Perkin Trans. 1; 1997, 1739.
(5) (a) Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.;
Zanirato, V. Tetrahedron Lett. 1984, 25, 4291.
(b) Confalone, P. N.; Baggiolini, E.; Hennessy, B.;
Pizzolato, G.; Uskokovic, M. R. J. Org. Chem. 1981, 46,
4923.
(6) Although LiEt3BH or Li(s-Bu)3BH showed the complete
stereoselectivity, we did not opt for these reagents for the
synthetic purpose. With these reagents, the starting material
9 was not consumed even by using 3 equivalents and the
separation of 9 from the product 10 was not easy.
(12) The diacetate 13 was synthesized from the alcohol 10 in 4
steps [(1) Ac2O, pyridine; (2) H2, Lindlar's catalyst,
quinoline, hexane; (3) 0.5 M H2SO4 aq., 1,4-dioxane; (4)
Ac2O, pyridine (88% yield, overall)]. Attempted
Reduction of 9 with other reagents.
hydrogenations of 5 into 13 with Lindlar's catalyst were
accompanied by the over-hydrogenation. The diacetate 14
was synthesized from 2-methyl-2-cyclohexen-1-one in a
similar manner as Scheme 1.
Reagenta
Conditions
Yield/%
Selectiv-
(recovery of 9) ityb
NaBH4
MeOH/r.t.
no reaction
89 (7)
--
LiEt3BH
THF/-78 °C r.t.
>99:1
>99:1
92:8
Li(s-Bu)3BH THF/-78 °C r.t.
(i-Bu)2AlH THF/-78 °C 0 °C
80 (1)
93 (--)
a Used in three equivalents.
b 10:10’.
Synlett 2001, No. 10, 1650–1652 ISSN 0936-5214 © Thieme Stuttgart · New York