7040
V. V. Sureshbabu et al. / Tetrahedron Letters 48 (2007) 7038–7041
N
N
N
N
n
O
NH
NH
N
N
CN
n
COOH
NH2
H
n
n
c
a
b
N
COOMe
FmocHN
COOH
FmocHN
FmocHN
COOH
FmocHN
O
R
n = 1, 2; R = CH2CH(CH3)2, CH3, H, CH2C6H5
Scheme 2. Reagents and conditions: (a) Trifluoroacetic anhydride–pyridine (1:1), THF, 0 °C, 6 h, 70–80%; (b) NaN3, ZnBr2, water/2-propanol (2:1),
80 °C, 16 h, 65–75%; (c) HBTU, DIEA, MeOH, DCM, 0 °C ! rt, 5 h, 80–90%.
Table 2. Synthesis of side chain derived tetrazole analogues of aspartic and glutamic acids and peptides
Entry
Compound
Yield (%)
Mp (°C)
Massa (obs/calc)
1
2
3
4
5
6
7
8
9
Fmoc-Asp(T)-OH
Fmoc-Glu(T)-OH
76
79
66
71
74
69
71
73
76
202
190
163
213
178
185
157
192
183
379.3719 (379.3734)
393.3991 (393.4008)
506.5563 (506.5581)
464.4765 (464.4789)
450.4301 (450.4513)
540.5726 (540.5758)
520.5812 (520.5855)
478.5023 (478.5058)
464.4741 (464.4785)
Fmoc-Asp(T)-Leu-OCH3
Fmoc-Asp(T)-Ala-OCH3
Fmoc-Asp(T)-Gly-OCH3
Fmoc-Asp(T)-Phe-OCH3
Fmoc-Glu(T)-Leu-OCH3
Fmoc-Glu(T)-Ala-OCH3
Fmoc-Glu(T)-Gly-OCH3
a High resolution mass spectrometry (HRMS).
the side chains. Although, initially we had started our
synthesis using Fmoc-Asn-OMe and Fmoc-Gln-OMe,
it was found that the entire protocol could be carried
out starting from Fmoc-Asn/Gln.
References and notes
1. (a) Bavetsias, V.; Marriott, J. H.; Melin, C.; Kimbell, R.;
Matusiak, Z. S.; Thomas Boyle, F.; Jackman, A. L. J.
Med. Chem. 2000, 43, 1910–1926; (b) Upadhayaya, R. S.;
Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S. K.
Eur. J. Med. Chem. 2004, 39, 579–592.
2. (a) Beusen, D. D.; Zabrocki, J.; Slomczynska, U.; Head,
R. D.; Kao, J. L. F.; Marshall, G. R. Biopolymers 1995,
36, 181–200; (b) Zabrocki, J.; Smith, G. D.; Dunbar, J. B.,
Jr.; Iijima, H.; Marshall, G. R. J. Am. Chem. Soc. 1988,
110, 5875–5880; (c) Zabrocki, J.; Dunbar, J. B.; Marshall,
K. W.; Toth, M. V.; Marshall, G. R. J. Org. Chem. 1992,
57, 202–209.
3. (a) Thornber, C. W. Chem. Soc. Rev. 1979, 8, 563–580; (b)
Wittenberger, S. J. Org. Prep. Proced. Int. 1994, 26, 499–
531.
4. (a) Knudsen, K. R.; Mitchell, C. E. T.; Ley, S. V. Chem.
Commun. 2006, 66–68; (b) Torii, H.; Nakadai, M.;
Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem.,
Int. Ed. 2004, 43, 1983–1986; (c) Chowdari, N. S.; Ahmad,
M.; Albertshofer, K.; Tanaka, F.; Barbas, C. F., III. Org.
Lett. 2006, 8, 2839–2842.
5. (a) Lodyga-Chruscinska, E.; Sanna, D.; Micera, G.;
Chruscinki, L.; Olejnik, J.; Nachman, R. J.; Zabrocki, J.
Acta. Biochim. Pol 2006, 53, 65–72; (b) Lodyga-Chrus-
cinska, E.; Oldziej, S.; Micera, G.; Sanna, D.; Chruscinki,
L.; Olczak, J.; Zabrocki, J. J. Inorg. Biochem. 2004, 98,
447–458; (c) Lee, K.; Kim, Y.; Baeck, K. K. J. Organomet.
Chem. 2005, 690, 4319–4329.
6. (a) Kabada, P. K. Synthesis 1973, 71–84; (b) Herbst, R.
M.; Froberger, C. F. J. Org. Chem. 1957, 22, 1050–1053;
(c) Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am.
Chem. Soc. 1958, 80, 3908–3911.
A two-step protocol including conversion of a carbox-
amido group to a nitrile followed by cycloaddition
resulted in Fmoc-Asp(T)-OH and Fmoc-Glu(T)-OH in
76% and 79% yields, respectively, which were fully char-
acterized by 1H NMR, 13C NMR and mass spectral
studies (Table 2). The tetrazolyl acids were employed
as building blocks to prepare peptides possessing a tetra-
zole unit in the side chain. Fmoc-Asp(T)-OH or Fmoc-
Glu(T)-OH was coupled with amino acid methyl ester
hydrochlorides using the standard HBTU and DIEA
methods. The coupling was carried out at 0 °C in
DCM and the reaction mixture was allowed to warm
to room temperature over 5 h. After work-up, the prod-
ucts were isolated as solids in yields around 80–90%.
In conclusion, tetrazole analogues of amino acids/pep-
tides have been synthesized through an Fmoc-amino
protection strategy. The use of Fmoc for amine protec-
tion facilitated the easy isolation of intermediate nitriles
and final tetrazoles. Amino free tetrazoles were obtained
by deprotection of the Fmoc group under mild reaction
conditions. The tetrazole-containing unnatural amino
acids isosteric to Asp/Glu have been similarly synthe-
sized from Fmoc-Asn/Gln and utilized in the synthesis
of peptides. In all cases, the final tetrazole products were
isolated in high yields and purities.
7. (a) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66,
7945–7950; (b) Demko, Z. P.; Sharpless, K. B. Org. Lett.
2002, 4, 2525–2527.
Acknowledgements
8. (a) Grzonka, Z.; Liberek, B. Roczniki. Chem. 1971, 45,
967–980; (b) Grzonka, Z.; Rekowska, E.; Liberek, B.
Tetrahedron 1971, 27, 2317–2322.
9. Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J.
B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84–96.
We are grateful to the Department of Science and Tech-
nology (DST), Government of India, for financial assis-
tance. R.V.R. acknowledges the CSIR, New Delhi, for a
SRF.