Published on Web 12/04/2001
Catalytic, Enantioselective Alkylation of r-Imino Esters: The
Synthesis of Nonnatural r-Amino Acid Derivatives
Dana Ferraris, Brandon Young, Christopher Cox, Travis Dudding,
William J. Drury, III, Lev Ryzhkov,# Andrew E. Taggi, and Thomas Lectka*
Contribution from the Department of Chemistry, Johns Hopkins UniVersity,
3400 North Charles Street, Baltimore, Maryland 21218, and Department of Chemistry,
Towson UniVersity, 8000 York Road, Towson, Maryland 21252
Received August 14, 2001. Revised Manuscript Received October 22, 2001
Abstract: Methodology for the practical synthesis of nonnatural amino acids has been developed through
the catalytic, asymmetric alkylation of R-imino esters and N,O-acetals by enol silanes, ketene acetals,
alkenes, and allylsilanes using chiral transition metal-phosphine complexes as catalysts (1-5 mol %). The
alkylation products, which are prepared with high enantioselectivity (up to 99% ee) and diastereoselectivity
(up to 25:1/anti:syn), are protected nonnatural amino acids that represent potential precursors to natural
products and pharmaceuticals. A kinetic analysis of the catalyzed reaction of alkenes with R-imino esters
is presented to shed light on the mechanism of this reaction.
Introduction
ester, first used as precursors to amino acids in groundbreaking
work by Weinreb.5
One of the paramount goals of asymmetric catalysis has been
the synthesis of optically pure, nonnatural R-amino acids for
use in natural products, peptide, and pharmaceutical chemistry.1
While a spectrum of methods is available for this purpose,
potentially one of the most attractive approaches involves the
asymmetric alkylation of imines2 and N-acetals.3 One very
successful imine alkylation strategy that has recently emerged
is the catalytic, asymmetric Strecker reaction,4 in which a highly
oxidized nucleophile such as hydrogen cyanide or its synthetic
equivalent is added to imines asymmetrically to produce
R-cyanoamine products that can be hydrolyzed to the corre-
sponding optically enriched R-amino acids. An alternative
approach, which we employ, involves an imine containing a
highly oxidized carboalkoxy substituent, such as an R-imino
Our recent work has focused on the synthesis of enantio-
enriched R-amino acid derivatives through the catalytic asym-
metric alkylation of R-imino esters 1 with a variety of carbon-
based nucleophiles using late-transition metal bis(phosphine)
complexes as catalysts (eq 1, pathway A).6 A complementary
system reported by Sodeoka for R-imino ester alkylation using
a Pd(II)-based complex that operates through the catalytic
generation of enolates is contemporaneous with our work.2b Our
catalyst system has also been fruitfully used by others on closely
related reactions.7 Additionally, we have also developed a
practical, preparative scale synthesis of R-amino acid derivatives
using hydrolytically stable N,O-acetals 9 (eq 1, pathway B)
instead of imines with minimal loss in selectivity or yield.8 Our
first contribution concerned the alkylation of R-imino esters by
enol silanes (eq 1, pathway A, Nu ) 2).6 In a related
communication, we reported the first example of a catalytic,
enantioselective imino ene reaction (eq 1, pathway A, Nu )
11) to generate enantio-enriched allylic amino acids 4.9,10 Herein
# Towson University.
(1) Recent reviews of amino acid synthesis: (a) Bloch, R. Chem. ReV. 1998,
98, 1407. (b) Williams, R. M. Synthesis of Optically ActiVe R-Amino Acids;
Pergammon: New York, 1989. (c) Duthaler, R. O. Tetrahedron 1994, 50,
1539. (d) Hegedus, L. Acc. Chem. Res. 1995, 28, 299. Synthesis of
nonnatural R-amino acids in natural products: (e) Boger, D. L.; Patane,
M. A.; Zhou, J. J. Am. Chem. Soc. 1994, 116, 8544. (f) Boger, D. L.;
Yohannes, D. J. Org. Chem. 1990, 55, 6000.
(5) Weinreb, S. M. Top. Curr. Chem. 1997, 190, 131.
(6) (a) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc.
1998, 120, 4548. (b) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J., III;
Dudding, T.; Lectka, T. J. Org. Chem. 1998, 63, 6090.
(2) For representative examples of Lewis acid-catalyzed enantioselective imine
alkylations, see: (a) Kobayashi, S.; Ishitiani, H. Chem. ReV. 1999, 99, 1069.
(b) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120,
2474. (c) Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1997, 119, 10049.
(d) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119,
7153. A proline-catalyzed asymmetric Mannich reaction has recently been
reported: (e) List, B. J. Am. Chem. Soc. 2000, 122, 9336.
(3) (a) Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649. For reviews of
R-amidoalkylation reactions, see: (b) Zaugg, H. E. Synthesis 1984, 85. (c)
Zaugg, H. E. Synthesis 1984, 181.
(7) (a) Saaby, S.; Fang, X.; Gathergood, N.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2000, 39, 4114. (b) Jørgensen, K. A. Angew. Chem., Int. Ed. 2000,
39, 3558. (c) Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A. Chem.-
Eur. J. 2000, 6, 2435. (d) Yao, S.; Fang, X.; Jørgensen, K. A. J. Chem.
Soc., Chem. Commun. 1998, 2547.
(8) Ferraris, D.; Dudding, T.; Young, B.; Drury, W. J., III; Lectka, T. J. Org.
Chem. 1999, 64, 2168.
(9) Drury, W. J., III; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem.
Soc. 1998, 120, 11006.
(4) (a) Synopsis: Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875. (b) Sigman,
M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279.
(c) Porter, J. R.; Wirschun, W. G.; Kuntz, K. W.; Snapper, M. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2000, 122, 2657. (d) Sigman, M. S.; Jacobsen, E.
N. J. Am. Chem. Soc. 1998, 120, 4901. (e) Kobayashi, S.; Ishitani, H.;
Ueno, M. J. Am. Chem. Soc. 1998, 120, 431. (f) Fujieda, H.; Kanai, M.;
Kambara, T.; Iida, A.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 2060.
(10) (a) For a review of imino ene reactions, see: Borzilleri, R. B.; Weinreb, S.
M. Synthesis 1995, 347. (b) For a review of asymmetric ene reactions,
see: Mikami, K.; Shimizu, M. Chem. ReV. 1992, 92, 1021. For two notable
examples of asymmetric ene reactions, see: (c) Evans, D. A.; Burgey, C.
S.; Paras, N. A.; Vojkovsky, T.; Tregay, S. W. J. Am. Chem. Soc. 1998,
120, 5824. (d) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1989,
111, 1940.
9
10.1021/ja016838j CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. VOL. 124, NO. 1, 2002 67