10.1002/adsc.201900975
Advanced Synthesis & Catalysis
a Minisci-type reaction of heterocycles with alcohols.
Besides, the features of metal and photo-catalyst free,
scalability and compatibility of diverse functional
groups make it very attractive to synthetic organic
chemistry. Most importantly, this protocol can be
used to break a given C-C bond selectively even in
sugars and complex natural products, which would
have great potential for application in biomass
conversions. Future studies on exploring catalytic
hypervalent iodine systems are ongoing in our lab.
Zhao, Chem. Sci. 2017, 8, 3885-3890. (e) J. Liu, X. Qiu,
X. Huang, X. Luo, C. Zhang, J. Wei, J. Pan, Y. Liang,
Y. Zhu, Q. Qin, S. Song, N. Jiao, Nat. Chem. 2019, 11,
71-77. (f) J. Zhu, J. Wang, G. Dong, Nat. Chem. 2019,
11, 45-51. (g) A. Xia, X. Qi, X. Mao, X. Wu, X. Yang,
R. Zhang, Z. Xiang, Z. Lian, Y. Chen, S. Yang, Org.
Lett. 2019, 3028-3033.
[3] For recent reviews on C-C fragmentation via alkoxy
radical, see: (a) J. Hartung, Eur. J. Org. Chem. 2001,
619-632. (b) J. Hartung, T. Gottwald, K. špehar,
Synthesis 2002, 1469-1498. (c) M. Murakami, N. Ishida,
Chem. Lett. 2017, 46, 1692-1700. (d) K. Jia, Y. Chen,
Chem. Commun. 2018, 54, 6105-6112.
Experimental Section
Lepidine 1 (28.6 mg, 0.2 mmol, 1.0 equiv) and 2-
methylbutanol 2 (88.0 mg, 1.0 mmol, 5.0 equiv) were first
dispersed in 1 mL DCM. PIFA (171.6 mg, 0.4 mmol, 2.0
equiv) was then added. The reaction was irradiated with 24
W blue LEDs and kept at rt under fan cooling for 2 h.
After the reaction completion monitored by TLC, the
mixture was quenched by addition of saturated NaHCO3
until pH>8 and then extracted with DCM (3 x 2 mL). The
combined organic extracts were washed by brine, dried
over Na2SO4, filtered, concentrated, and purified by flash
column chromatography on silica gel (eluted with
hexane/acetone (v/v 20:1)) to give the desired product
(isolated yield 85%).
[4] (a) S. Chiba, Z. Cao, S. A. A. El Bialy, K. Narasaka,
Chem. Lett. 2006, 35, 18-19. (b) Y.-F. Wang, S. Chiba,
J. Am. Chem. Soc. 2009, 131, 12570-12752.
[5] (a) J. Yu, H. Zhao, S. Liang, X. Bao, C. Zhu, Org.
Biomol. Chem. 2015, 13, 7924-7927. (b) H. Zhao, X.
Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 2015, 137, 3490-
3493. (c) R. Ren, H. Zhao, L. Huan, C. Zhu, Angew.
Chem. Int. Ed. 2015, 54, 12692-12696. (d) R. Ren, Z.
Wu, Y. Xu, C. Zhu, Angew. Chem. Int. Ed. 2016, 55,
2866-2869.
[6] (a) K. F. Jia, F. Y. Zhang, H. C. Huang, Y. Y. Chen, J.
Am. Chem. Soc. 2016, 138, 1514-1517. (b) K. F. Jia, Y.
Pan, Y. Y. Chen, Angew. Chem. Int. Ed. 2017, 56,
2478-2481.
Acknowledgements
This project is supported by National Natural Science
Foundation of China (No. 21672089).
[7] (a) A. Ilangovan, S. Saravanakumar, S.
Malayappasamy, Org. Lett. 2013, 15, 4968-4971. (b) Z.
Ye, M. Dai, Org. Lett. 2015, 17, 2190-2193. (c) J.-J.
Guo, A. Hu, Y. Chen, J. Sun, H. Tang, Z. Zuo, Angew.
Chem. Int. Ed. 2016, 55, 15319-15322. (d) H. G. Yayla,
H. Wang, K. T. Tarantino, H. S. Orbe, R. R. Knowles,
J. Am. Chem. Soc. 2016, 138, 10794-10797. (e) S.-C.
Lu, H.-S. Li, S. Xu, G.-Y. Duan, Org. Biomol. Chem.
2017, 15, 324-327. (f) A. Hu, Y. Chen, J. J. Guo, N. Yu,
References
[1] For selected reviews on C-C bond cleavage, see: (a) M.
Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300-307.
(b) M. A. Fahim, T. A. Alsahhaf, A. Elkilani,
Fundamentals of Petroleum Refining 2010. (c) M.
Murakami, T. Matsuda, Chem. Commun. 2011, 47,
1100-1105. (d) M. A. Drahl, M. Manpadi, L. J.
Williams, Angew. Chem. Int. Ed. 2013, 52, 11222-
11251. (e) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014,
114, 8613-8661. (f) G. Dong, C-C Bond Activation
(Topics in Current Chemistry 346, Springer, Berlin,
2014). (g) M. Murakami, Cleavage of Carbon-Carbon
Single Bonds by Transition Metals (Wiley-VCH,
Weinheim, 2015). (h) L. Souillart, N. Cramer, Chem.
Rev. 2015, 115, 9410-9464. (i) G. Fumagalli, S.
Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404-9432.
(j) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017,
117, 8977-9015. (k) Y.-F. Liang, N. Jiao, Acc. Chem.
Res. 2017, 50, 1640-1653. (l) M. Wang, J. Lu, L. Li, H.
Li, H. Liu, F. Wang, J. Catal. 2017, 348, 160-167. (m)
F. Song, T. Gou, B.-Q. Wang, Z.-J. Shi, Chem. Soc.
Rev. 2018, 47, 7078-7115. (n) M. Wang, J. Ma, H. Liu,
N. Luo, Z. Zhao, F. Wang, ACS Catal. 2018, 8, 2129-
2165.
[8] (a) G. X. Li, X. F. Hu, G. He, G. Chen, Chem. Sci.
2019, 10, 688-693. (b) E. Ota, H. Wang, N. L. Frye, R.
[9] (a) H. Suginome, K. Kato, Tetrahedron Lett. 1973, 14,
4139-4142. (b) H. Takahashi, M. Ito, H. Suginome, T.
Masamune, Chem. Lett. 1979, 901-904. (c) H.
Suginome, S. Yamada, J. Org. Chem. 1984, 49, 3753-
3762. (d) R. Freire, J. J. Marrero, M. S. Rodríguez, E.
Suárez, Tetrahedron Lett. 1986, 27, 383-386. (e) K.
Kobayashi, M. Itoh, H. Suginome, Tetrahedron Lett.
1987, 28, 3369-3372. (f) H. Suginome, S. Yamada,
Chem. Lett. 1988, 245-248. (g) G. Stork, R. Mah,
Tetrahedron Lett. 1989, 30, 3609-3612. (h) M. Kaino,
Y. Naruse, K. Ishihara, H. Yamamoto, J. Org. Chem.
1990, 55, 5814-5815. (i) M. Y. Chu-Moyer, S. J.
Danishefsky, J. Am. Chem. Soc. 1992, 114, 8333-8334.
(j) P. de Armas, C. G. Francisco, E. Suárez, Angew.
Chem. Int. Ed. 1992, 31, 772-774. (k) P. de Armas, C.
G. Francisco, E. Suárez, J. Am. Chem. Soc. 1993, 115,
8865-8866. (l) F. E. Ziegler, Y. Wang, J. Org. Chem.
1998, 63, 7920-7930. (m) J. H. Rigby, N. C.
[2] For selected recent examples of C-C cleavage, see: (a)
M. Waibel, N. Cramer, Angew. Chem. Int. Ed. 2010, 49,
4455-4458. (b) Y. Wang, Q. Kang, Org. Lett. 2014, 16,
4190-4193. (c) E. Ozkal, B. Cacherat, B. Morandi, ACS
Catal. 2015, 5, 6458-6462. (d) T.-L. Liu, J. E. Wu, Y.
6
This article is protected by copyright. All rights reserved.