32
J . Org. Chem. 2002, 67, 32-37
Syn th esis of 2,3-Disu bstitu ted P yr r oles fr om
3,N-Dilith io-N-(ter t-bu tyld im eth ylsilyl)-2-bu ten -1-a m in e
Madeleine A. J acobson and Paul G. Williard*
Department of Chemistry, Brown University, Providence, Rhode Island 02912
Paul_Williard@brown.edu
Received March 20, 2001
N-(Trialkylsilyl)allylamines can be deprotonated at the cis-vinylic position to yield 3,N-dilithio-N-
(trialkylsilyl)allylamines under mild conditions. N-(Trialkylsilyl)allylamines with terminal alkyl
substituents were reported not to form dianions under the same conditions. During our investiga-
tions we found that N-(tert-butyldimethylsilyl)-2-buten-1-amine (1) is deprotonated under the
reaction conditions reported in the literature, but the resulting dianion is quenched by ethereal
solvents. Consequently, new reaction conditions were developed that allow the generation of stable
dianions from allylamines with terminal alkyl substituents. Thus, 2,3-disubstituted pyrroles hitherto
unattainable via this methodology were formed from 3,N-dilithio-N-(tert-butyldimethylsilyl)-2-buten-
1-amine (2) and various carbonyl electrophiles in good yields.
In tr od u ction
More recently some new methods have come to light, such
as the rhodium-catalyzed reaction of R-diazo ketoacyl
amides,14 the reaction of chromium carbene complexes
with 1-azadienes,15 the reaction of dichloroazodienes with
electron-rich olefins,16 and McMurry’s intramolecular
type II alkylidenation of acylamidocarbonyls.17 In addi-
tion, several reviews have recently been published on the
synthesis of pyrroles.18
Pyrroles represent an important class of heterocyclic
compounds.1,2 They are abundant in nature3 and are of
great interest as subunits for natural products.4 In
addition, substituted pyrroles often display biological
activity.1a,5 Pyrroles are also building blocks for por-
phyrins,2a,6 and polymers of pyrroles have found use as
conducting and nonlinear optics materials.7 Because of
their utility and interest there are numerous synthetic
pathways by which pyrroles can be synthesized.8 The
classical methods include the Hanzsch method using
chloroacetone and 3-amino ethyl crotonate,9 the Knorr10
and Paal-Knorr11 syntheses, as well as various 1,3-
dipolar cycloaddition reactions, such as the reaction of
nitrile ylides with alkynes,12 and reactions involving
substrates such as oxazolones, azalactones, and alkynes.13
2,3-Disubstituted pyrroles can be prepared by the
Trofimov reaction between appropriately substituted
oximes and ethyne,19 chloroethene,20 or 1,2-dichloroeth-
(8) (a) Patterson, J . M. Synthesis 1976, 5, 281. (b) J ones, R. A.; Bean,
G. P. The Chemistry of Pyrroles; Academic Press, Inc.: London, 1977.
(c) Bean, G. P. In The Chemistry of Heterocyclic Compounds; J ones,
A. R., Ed.; J ohn Wiley & Sons: New York, 1990; Vol. 48, Part 1,
Chapter 2, p 105. (d) Trofimov, B. A.; Mikhaleva, A. I. Heterocycles
1994, 37, 1193. (e) Enders, D.; Maassen, R.; Han, S.-H. Liebigs Ann
1996, 10, 1565. (f) J ones, G. B.; Chapman, B. J . In Comprehensive
Heterocyclic Chemistry; Bird, C. W., Ed.; Pergamon Press: Oxford,
1996; Vol. 2, p 1. (g) Black, D. St. C. In Comprehensive Heterocyclic
Chemistry; Bird, C. W., Ed.; Pergamon Press: Oxford, 1996; Vol. 2, p
39. (h) Sundberg, R. J . In Comprehensive Heterocyclic Chemistry; Bird,
C. W., Ed.; Pergamon Press: Oxford, 1996; Vol. 2, p 119. (i) Gribble,
G. W. In Comprehensive Heterocyclic Chemistry; Bird, C. W., Ed.;
Pergamon Press: Oxford, 1996; Vol. 2, p 207. (j) Gilchrist, T. L. J .
Chem. Soc., Perkin Trans. 1 1998, 615.
(9) (a) Hantzsch, A. Chem. Ber. 1890, 23, 1474. (b) Beelen van, D.
C.; Wolters, J .; Gen van der, A. Recl. Trav. Chim. Pays-Bas 1979, 98,
437.
(10) (a) Knorr, L. Ber. 1884, 17, 1635. (b) Knorr, L. Annalen 1886,
236, 290. (c) Kleinspehn, G. G. J . Am. Chem. Soc. 1955, 77, 1546.
(11) (a) Paal, C. Ber. 1885, 18, 367. (b) Knorr, L. Ber. 1885, 18, 1568.
(c) See ref 8b, Chapter 3.
(12) (a) Huisgen, R.; Stangl, H.; Sturm, H. J .; Wagenhofer, H. Angew.
Chem., Int. Ed. Engl. 1962, 1, 50. (b) Berre´e, F.; Marchand, E.; Morel,
G. Tetrahedron Lett. 1992, 33, 6155.
(13) (a) Bayer, H. O.; Gotthardt, H.; Huisgen, R. Chem. Ber. 1970,
103, 2356. (b) Huisgen, R.; Gotthardt, H.; Bayer, H. O.; Schaefer, F.
C. Chem. Ber. 1970, 103, 2611.
(14) Padwa, A.; Deen, D. C.; Hertzog, D. C.; Nadler, W. R.; Zhi, L.
Tetrahedron 1992, 48, 7565.
(15) Danks, T. N.; Velo-Rego, D. Tetrahedron Lett. 1994, 35, 9443.
(16) South, M. S.; J akuboski, T. L.; Westmeyer, M. D.; Dukesherer,
D. R. Tetrahedron Lett. 1996, 37, 1351.
(1) For biologically important pyrroles, see: (a) Lainton, J . A. H.;
Huffman, J . W.; Martin, B. R.; Compton, D. R. Tetrahedron Lett. 1995,
36, 1401. (b) de Leon, C. Y.; Ganem, B. Tetrahedron 1997, 53, 7731.
(c) Gupton, J . T.; Krumpe, K. E.; Burnham, B. S.; Dwornik, K. A.;
Petrich, S. A.; Du, K. X.; Bruce, M. A.; Vu, P.; Vargas, M.; Keertikar,
K. M.; Hosein, K. N.; J ones, C. R.; Sikorski, J . A. Tetrahedron 1998,
54, 5075. (d) J acobi, P. A.; Coutts, L. D.; Guo, J .; Hauck, S. I.; Leung,
S. H. J . Org. Chem. 2000, 65, 205.
(2) For the chemistry of macrocycles containing pyrrole units; see:
(a) Sessler, J . L.; Weghorn, S. J . Expanded, Contracted & Isomeric
Porphyrins; Pergamon Press: Oxford, 1997. (b) Thoresen, L. H.; Kim,
H.; Welch, M. B.; Burghart, A.; Burgess, K. Synlett 1998, 11, 1276.
(3) Pinder, A. R. In The Alkaloids; Grundon, M. F., Ed., The Royal
Chemical Society: London, 1982; Vol. 12, Chapter 2, p 35.
(4) See (a) Herbert, R. B. In The Alkaloids; Grundon, M. F., Ed.;
The Royal Chemical Society: London, 1982; Vol. 12, Chapter 1, p 1.
(b) Falk, H. The Chemistry of Linear Oligopyrroles and Bile Pigments;
Springer-Verlag: Wienna, 1989. (c) Biosynthesis of Tetrapyrroles;
J ordan, P. M., Ed.; Elsevier: Amsterdam, 1991.
(5) (a) Korostova, S. E.; Sobenina, L. N.; Nersterenko, R. N.; Aliev,
I. A.; Mikhaleva, A. I. Zh. Org. Khim. 1984, 1960; Chem. Abstr. 1985,
102, 131860. (b) Itoh, S.; Fukui, Y.; Haranou, S.; Ogino, M.; Komatsu,
M.; Ohshiro, Y. J . Org. Chem. 1992, 57, 4452. (c) Woo, J .; Sigurdsson,
S. T.; Hopkins, P. B. J . Am. Chem. Soc. 1993, 115, 3407.
(6) (a) Porphyrins and Metalloporphyrins; Smith, K. M., Ed.;
Elsevier: Amsterdam, 1975. (b) Franck, B.; Nonn, A. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1795.
(17) Furstner, A.; Bogdanovic, B. Angew. Chem., Int. Ed. Engl. 1996,
35, 2442.
(7) (a) Niziurski-Mann, R. E.; Cava, M. P. Heterocycles 1992, 34,
2003. (b) Naarmann, H.; Theophilou, N. In Electroresponsive Molecular
and Polymeric Systems; Skotheim, T. A., Ed.; Marcel Dekker Inc.: New
York, 1988; Vol. 1. (c) Bauerle, P. Adv. Mater. 1993, 5, 879.
(18) (a) Sundberg, R. J . Prog. Heterocycl. Chem. 1992, 4, 81. (b)
Gilchrist, T. L. Contemp. Org. Synth. 1994, 1, 205. (c) Sundberg, R. J .;
Nguyen, P. V. Prog. Heterocycl. Chem. 1994, 6, 110. (d) Gilchrist, T.
L. J . Chem. Soc., Perkin Trans. 1 1998, 615.
10.1021/jo015638n CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/08/2001