322
P. G. Nantermet et al. / Bioorg. Med. Chem. Lett. 12 (2002) 319–323
and functional assays with such compounds suggest that
they indeed behave as selective antagonists of the
thrombin receptor PAR-1, competing with the binding
of the tethered ligand to its receptor site rather than
interfering with the enzymatic activity of thrombin.
Acknowledgements
The authors thank Mary Becker for help in the pre-
paration of this manuscript and J. Murphy, S. Pitzen-
berger, S. Varga, A. Coddington, C. Ross, H. Ramjit,
K. Anderson, P. Ciecko and M. Zrada for analytical
support.
Figure 3. Inhibition of platelet aggregation induced by 1 nM thrombin
and measured by change in transmittance, using various concentration
of 54 (0, 0.4, 1, 4, 10 mM).
References and Notes
the exception of the 4-iodo derivative 50. Combination
of the previous results lead us to the synthesis of di-
substituted antagonists 51–55. Disubstitution at the 3,4-
position resulted in compounds with good activity
against TRAP but not thrombin-stimulated platelet
secretion. The diminished activity of compounds such as
53 against thrombin as the agonist could be due to
various factors. The off-rate of these compounds may be
too fast, allowing for the tethered ligand to bind and
activate platelets. Involvement of PAR-4 on platelets is
also a complicating feature although it usually requires
a much higher thrombin concentration for activation.4
Finally, the compounds may exhibit different binding
affinities for the cleaved (thrombin activated) and
uncleaved (TRAP activated) receptors. Further studies
are required to define the importance of these and other
potential factors.
1. Golsack, N. R.; Chambers, R. C.; Dabbagh, K.; Laurent,
G. J. Int. J. Biochem. Cell Biol. 1998, 30, 641.
2. Vu, T. K.; Hung, D. T.; Wheaton, V. I.; Coughlin, S. R.
Cell 1991, 64, 1057.
3. (a) Macfarlane, S. R.; Seatter, M. J.; Kanke, T.; Hunter,
G. D.; Plevin, R. Pharmacol. Rev. 2001, 53, 245. (b) O’Brien,
P. J.; Molino, M.; Kahn, M.; Brass, L. F. Oncogene 2001, 20,
1570. (c) Coughlin, S. R. Nature 2000, 407, 258. (d) Vergnolle,
N. Aliment. Pharmacol. Ther. 2000, 14, 257. (e) Coughlin, S. R.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11023. (f) Dery, O.;
Corvera, C. U.; Steinhoff, M.; Bunnett, N. W. Am. J. Physiol.
1998, 274, C1429. (g) Hou, L.; Howells, G. L.; Kapas, S.;
Macey, M. G. Br. J. Haematol. 1998, 101, 1. (h) Brass, L. F.;
Molino, M. Thromb. Haemostasis 1997, 78, 234. (i) Grand,
R. J. A.; Turnell, A. S.; Grabham, P. W. Biochem. J. 1996,
313, 353. (j) Hollenberg, M. D. TiPS 1996, 17, 3. (k) Coughlin,
S. R. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 9200.
4. Dery, O.; Bunnett, N. W. Biochem. Soc. Trans. 1999, 27, 246.
5. (a) Ray, A.; Hedge, L. G.; Gupta, J. B. Thromb. Res. 1997,
87. (b) Ogletree, M. L.; Natarajan, S.; Seiler, S. M. Perspect.
Drug Discov. Des. 1993, 1, 527. (c) Pakala, R.; Liang, C. T.;
Benedict, C. R. Thromb. Res. 2000, 100, 89. (d) Cocks, T. M.;
Moffat, J. D. Trends Pharma. Sci. 2000, 21, 103. (e) Napoli,
C.; Cicola, C.; Wallace, J. L.; De Nigris, F.; Standagada, V.;
Cliendo, G.; Franconi, F.; Ignarro, L. J.; Cirino, G. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 3678.
6. (a) Feng, D. M.; Veber, D. F.; Connolly, T. M.; Condra,
C.; Tang, M. J.; Nutt, R. F. J. Med. Chem. 1995, 38, 4125. (b)
Andrade-Gordon, P.; Maryanoff, B. E.; Derian, C. K.; Zhang,
H. C.; Addo, M. F.; Darrow, A. L.; Eckardt, A. J.; Hoekstra,
W. J.; McComsey, D. F.; Oksenberg, D.; Reynolds, E. E.;
Santulli, R. J.; Scarborough, R. M.; Smith, C. E.; White, K. B.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12257. (c) McComsey,
D. F.; Hawkins, M. J.; Andrade-Gordon, P.; Addo, M. F.;
Oksenberg, D.; Maryanoff, B. E. Bioorg. Med. Chem. Lett.
1999, 9, 1423. (d) Nose, T.; Satoh, Y.; Fijita, T.; Ohno, M.;
Nakajima, M.; Inoue, Y.; Ogino, Y.; Costa, T.; Shimohigashi,
Y. Bull. Chem. Soc. Jpn. 1998, 71, 1661. (e) Bernatowicz, M. S.;
Klimas, C. E.; Hartl, K. S.; Peluso, M.; Allegretto, N. J.; Sei-
ler, S. M. J. Med. Chem. 1996, 39, 4879. (f) Zhang, H.-C.;
Derian, C. K.; Andrade-Gordon, P.; Hoekstra, W. J.;
McComsey, D. F.; White, K. B.; Poulter, B. L.; Addo, M. F.;
Cheung, W.-M.; Damiano, B. P.; Oksenberg, D.; Reynolds,
E. E.; Pandey, A.; Scarborough, R. M.; Maryanoff, B. E. J.
Med. Chem. 2001, 44, 1021.
In contrast to the previous results, the 3,5-difluoro ana-
logue 54 demonstrates significant potency against both
TRAP and 1 nM thrombin stimulated platelet secretion
(thrombin IC50=0.51 mM, n=10).
Compound 54 is not an inhibitor of thrombin
catalytic activity (Ki>10 mM), nor does it display
any inhibition of platelet aggregation induced by
ADP or collagen at concentrations up to 20 mM. As
observed with most other tested compounds, the bind-
ing affinity of 54 for the receptor, as measured by dis-
placement of a specific radiolabeled peptide,11 is in
agreement with the functional data (Table 3). Taken
together these results suggest that 54 is acting via selec-
tive antagonism of PAR-1 and competing with the
intramolecular ligand.
To further evaluate its potential as an antiplatelet agent,
54 was tested for its ability to block human platelet
aggregation induced by 1 nM thrombin.12 As shown in
Figure 3, antagonist 54 fully inhibits platelet aggre-
gation stimulated by 1 nM thrombin for the length of
the experiment (10 min) at 4 mM, and for 5–6 min at 1
mm, which represents an improvement over our pre-
viously reported series.8
7. (a) Ahn, H. S. A.; Arik, L.; Boykow, G.; Burnett, D. A.;
Caplen, M. A.; Czarniecki, M.; Domalski, M. S.; Foster, C.;
Manna, M.; Stamford, A. W.; Wu, Y. Bioorg. Med. Chem.
Lett. 1999, 9, 2073. (b) Alexopoulos, K. A.; Matsoukas, J.;
In conclusion, aminoisoxazole derivatives such as 54 are
potent inhibitors of platelet activation. In vitro binding