8726
R. Mazurkiewicz et al. / Tetrahedron Letters 42 (2001) 8725–8727
Scheme 2.
Table 1. Synthesis of b-(N-acylamino)vinylphosphonium salts 7
Ylide 4
Imidoyl halide 5
b-(N-Acylamino)vinylphosphonium salt 7
R1
R2
R3
R4
X
No.
Yield (%)
Mp (°C)
H
H
H
H
H
H
H
Me
H
H
H
Me
Me
Me
Me
H
Me
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Me
PhCH2
Me
Me
Ph
PhCH2
Me
I
7a
7b
7c
7d
7e
7f
91
71
64
66
85
72
87
99
133–134
238–239
273–275
140–141
182–183
192–193
175–177
Resin
Cl
Cl
Cl
I
Cl
Cl
Cl
7g
7h
boxamides undergo a similar rearrangement.10 An
analogous rearrangement also probably takes place in
the case of well-known acylations of b-carbonyl ylides;
however, being a degenerate rearrangement, it cannot
be directly observed.
J
J
H–H=14.7 Hz, CH), 6.92 (dd, 1H, JP–H=17.0 Hz,
H–H=14.9 Hz, CH), 2.05 (s, 3H, Me); 7b: 7.8–7.2 (m,
22H, Ph and CH), 3.78 (s, 3H, Me); 7c: 7.82–7.26 (m,
25H, Ph), 7.05 (dd, 1H, JP–H=14.1 Hz, JH–H=15.0 Hz,
CH), 6.84 (dd, 1H, JP–H=17.4 Hz, JH–H=15.3 Hz, CH),
5.87 (s, 2H, CH2); 7d: 7.90–7.18 (m, 18H, Ph), 6.98 (d,
1H, JP–H=16.5 Hz, CH), 6.77 (d, 2H, J=7.2 Hz, o-Ph),
2.98 (s, 3H, Me), 2.75 (s, 3H, Me); 7e: (in DMSO-d6):
7.87–7.67 (m, 15H, Ph3P), 7.45–7.38 (m, 1H, Ph), 7.32–
7.25 (m, 2H, Ph), 6.93 (d, 1H, JP–H=16.2 Hz, CH),
6.90–6.85 (m, 2H, Ph), 2.84 (s, 3H, Me), 2.56 (s, 3H, Me);
7f: 7.9–6.5 (m, 26H, Ph and CH), 2.45 (s, 3H, Me); 7g:
7.85–7.22 (m, 25H, Ph), 6.25 (d, 1H, CH, JP–H=14.4 Hz),
5.52 (s, 2H, CH2), 1.66 (s, 3H, CH3); 7h: 7.88–7.18 (m,
20H, Ph), 6.91 (d, 1H, JP–H=20.4 Hz, CH), 3.75 (s, 3H,
NMe), 2.42 (d, 3H, JP–H=15.6 Hz, CMe).
The phosphonium salts 7 can be considered to be
prospective precursors for the synthesis of amino
derivatives of carbo- and heterocyclic systems (see
Scheme 1), synthesis of N-acylynamines (by b-elimina-
tion of Ph3P and HX if R2=H) or N-vinylamides (by
hydro-de-phosphonation of phosphonium salts 7).
References
6. 13C NMR spectra of 7a–h (75 MHz, CDCl3, l (ppm)/JC–P
(Hz)): 7a: 176.6 (CꢀO); 86.1/99.5 (Ca), 151.1/17.6 (Cb);
119.2/91.1, 133.7/10.7, 130.2/13.1, 134.5/3.0 (Ph3P, C-1,
C-2, C-3, C-4); 135.6, 122.5, 128.7, 125.2 (Ph, C-1, C-2,
C-3, C-4); 25.5 (Me); 7b: 170.9 (CꢀO); 83.5/100.5 (Ca),
150.8/17.8 (Cb); 119.4/91.4, 133.8/10.6, 130.2/12.9, 134.7/
3.0 (Ph3P, C-1, C-2, C-3, C-4); 132.8, 128.6, 127.8, 131.3
(Ph, C-1, C-2, C-3, C-4); 34.5 (Me); 7c: 171.6 (CꢀO);
85.1/100.5, (Ca) 149.7/17.8, (Cb) 119.1/91.8, 133.8/11.0,
130.2/12.9, 134.7/3.0 (Ph3P, C-1, C-2, C-3, C-4); 136.2,
133.0, 131.5, 128.9, 128.8, 128.6, 128.1, 127.5 (PhCO+
PhCH2); 47.9 (CH2); 7d: 170.4 (CꢀO); 99.4/97.6, (Ca)
161.6/8.6, (Cb) 120.6/92.5, 133.8/10.3, 130.0/12.8, 134.3/
3.1 (Ph3P, C-1, C-2, C-3, C-4); 133.2, 128.4, 127.0, 131.0
(Ph, C-1, C-2, C-3, C-4); 37.8 (NMe); 26.1/15.4 (CMe);
7e: (in DMSO-d6): 169.2 (CꢀO); 98.2/94.9, (Ca) 160.9/8.0,
(Cb) 120.6/92.5, 133.5/10.7, 129.7/12.8, 134.1/3.0 (Ph3P,
C-1, C-2, C-3, C-4); 133.3, 128.0, 127.1, 130.7 (Ph, C-1,
C-2, C-3, C-4); 36.7 (NMe); 24.8/15.5 (CMe); 7f: 170.3
(CꢀO); 98.2/94.4, (Ca) 161.0/5.2, (Cb) 120.1.1/91.8, 134.1/
10.3, 130.0/13.0, 134.0/3.0 (Ph3P, C-1, C-2, C-3, C-4);
133.0, 127.8, 127.3, 130.8 (Ph, C-1, C-2, C-3, C-4); 27.4/
15.5 (CMe); 7g: 172.1 (CꢀO); 98.8/95.9, (Ca) 164.4/10.6,
(Cb) 119.0/90.6, 133.2/10.9, 130.6/13.3, 135.1/3.1 (Ph3P,
1. (a) Schweizer, E. E. J. Am. Chem. Soc. 1964, 86, 2744; (b)
Schweizer, E. E.; Light, K. K. J. Am. Chem. Soc. 1964,
86, 2963; (c) Schweizer, E. E.; Berninger, C. J. J. Chem.
Soc., Chem. Commun. 1965, 92–93; (d) Schweizer, E. E.;
O’Neill, G. J. J. Org. Chem. 1965, 30, 2082–2083.
2. (a) Zbiral, E. In Organophosphorus Reagents in Organic
Synthesis; Cadogan, J. I. G., Ed.; London, 1979; pp.
250–266; (b) Johnson, A. W.; Kaska, W. C.; Ostoja
Starzewski, K. A.; Dixon, D. A.; Ylides and Imines of
Phosphorus; John Wiley & Sons: New York, 1993; pp.
112–114; (c) Burley, I.; Newson, A. T. Tetrahedron Lett.
1994, 35, 7099–7102.
3. General procedure: To a solution of imidoyl halide 5 (2.4
mmol) in MeCN (3.6 cm3) ylide 4 (2 mmol) was added,
and the mixture was left at room temperature for 24 h.
The phosphonium salt was precipitated from the reaction
mixture with Et2O (5–8 cm3). The product can be purified
further, if necessary, by column chromatography on silica
gel eluting with a mixture of CH2Cl2 and MeOH (97:3,
v/v).
4. The most characteristic amide carbonyl frequency falls in
the range 1690–1660 cm−1
.
5. 1H NMR spectral data of 7a–h (300 MHz, CDCl3, l): 7a:
7.75–7.21 (m, 20H, Ph), 7.10 (dd, 1H, JP–H=13.8 Hz,