722
G. Balliano et al. / Bioorg. Med. Chem. Lett. 19 (2009) 718–723
Table 3
Table 4
Effect of the most representative inhibitors on sterol biosynthesis in spheroplasts of S.
cerevisiae expressing T. cruzi OSC11: % radioactivity incorporated into non-saponifiable
lipids separated on TLC
Effect of the most representative inhibitors on sterol biosynthesis in spheroplasts of S.
cerevisiae expressing P. carinii OSC11: % radioactivity incorporated into non-saponi-
fiable lipids separated on TLC
% Radioactivity incorporated into non-saponifiable lipidsa
Squalene Oxido Lanosterol Mono Ergosterol
methylsterols
2.82
Compound
% Radioactivity incorporated into non-saponifiable lipidsa
Compound
Squalene
Oxido
Lanosterol
Mono
Ergosterol
squalene
methylsterols
squalene
1.72
Control
50.22
6.10
18.01
3.37
22.30
Control
70.33
10.42
14.71
1 fumarate
1 fumarate
0.1
lM
52.35
42.59
6.59
38.31
26.20
11.09
1.75
1.94
13.11
6.07
0.1
l
M
71.45
60.54
11.06
30.96
9.46
3.36
1.06
1.54
6.97
3.60
1
lM
1 lM
2 HCl
0.1
2 HCl
0.1
l
M
44.89
47.22
9.88
34.59
22.12
6.77
2.47
2.66
20.64
8.76
l
M
72.47
62.92
1.80
27.80
13.01
5.16
2.20
1.12
10.52
3.00
1
lM
1
lM
3 HCl
0.1
3 HCl
0.1
1 lM
l
M
48.34
40.90
8.69
33.39
22.99
12.38
2.72
2.29
17.26
11.04
l
M
62.92
64.27
2.50
16.7
17.43
10.21
3.25
1.99
13.90
6.83
1
lM
5 fumarate
0.1
1 lM
5 fumarate
0.1
l
M
44.47
52.38
33.26
33.37
10.29
5.08
1.32
1.62
10.66
7.55
l
M
66.59
63.37
8.23
24.96
10.78
5.20
2.91
1.39
11.49
5.08
1
lM
9 citrate
0.1
6 fumarate
0.1
1 lM
l
M
52.31
54.58
37.42
38.65
3.33
1.71
1.43
1.29
5.51
3.77
l
M
65.98
67.66
1.17
1.44
14.49
14.29
2.90
3.44
15.46
13.17
1
lM
11
1
10 lM
9 citrate
0.1
l
M
42.41
46.47
28.74
24.37
7.03
3.20
3.19
8.19
18.63
17.77
l
M
70.38
67.53
9.03
24.95
8.89
2.39
1.81
1.06
9.89
4.07
1
lM
14
1
10
20
0.1
12 HBr
0.1
l
lM
M
45.04
46.17
15.86
24.76
19.33
4.65
2.01
7.52
17.76
16.90
l
M
71.04
69.63
0.68
1.72
9.55
15.78
3.57
2.82
15.16
10.05
1
lM
13 HCl
0.1
lM
54.01
56.42
34.86
37.51
4.15
2.40
1.40
1.01
5.58
2.66
l
M
71.03
69.90
2.39
15.72
9.93
5.81
3.76
2.80
12.89
5.77
1
lM
1
lM
a
Values are the means of two separate experiments with duplicate incubations,
14
0.1
each. The maximum deviations from the mean were less than 10%.
l
M
M
69.01
69.62
1.30
5.44
12.55
9.84
4.02
3.91
13.12
11.19
1
l
a
Values are the means of two separate experiments with duplicate incubations,
compared with intact recombinant cells. Results confirmed data
from experiments with homogenates: all the compounds caused
a dose-dependent increase of the ratio between radioactive oxido-
squalene and sterols extracted from treated cells, thus indicating
that OSC was inhibited. The tested compounds did not substan-
tially affect the fraction of radioactive squalene, suggesting that
squalene epoxidase was not affected.
each. The maximum deviations from the mean were less than 10%.
Furthermore, we sincerely thank Felix Gruber, Barbara Huber, Mar-
ie-Paule Imhoff, Hans-Jakob Krebs, and Ann Petersen, for the prep-
aration of the compounds.
In conclusion, the screening of 25 compounds as inhibitors of P.
carinii and T. cruzi OSCs has identified several promising deriva-
tives as starting points for the development of novel antiparasitic
agents. The compounds 9, 11 and 20, which showed an activity
Thanks are due to Professor Seiichi Matsuda (Rice University,
Houston, TX, USA) for supplying S. cerevisiae strains SMY8[pBJ1.21],
expressing the OSC of T. cruzi; SMY8[pSM61.21], expressing the
wild-type yeast OSC; SMY8[pBJ4.21] expressing the P. carinii OSC;
SMY8[pSM60.21] expressing the A. thaliana OSC.
60.3 lM, are particularly promising as novel anti-Trypanosoma
agents, while the compounds 2, 3, 5, 11, 12, 13, 14 and 20 show
promise as novel anti-Pneumocystis agents. The derivatives 11
and 20 showed similar potency against both parasital OSCs. As a
rule, the P. carinii enzyme was more susceptible than T. cruzi en-
zyme to the action of the inhibitors. While three out of the four
most active compounds against P. carinii OSC were analogs of com-
pound 5, the most active compound against the T. cruzi enzyme
was the cyclohexylamine derivative 9, the only compound more
active against T. cruzi than against P. carinii OSC.
Homology models built taking advantage of the established
structure of human OSC12 could be useful to relate the structure
and activity of compounds to the differences in the active site of tar-
get enzymes. In silico studies are in progress with the aim of finding
novel active molecules and improving the parasite versus human
selectivity of the most active compounds of the present series.
References and notes
1. (a) Ruckenstuhl, C.; Lang, S.; Poschenel, A.; Eidenberger, A.; Baral, K. P.; Kohut,
P.; Hapala, I.; Gruber, K.; Turnowsky, F. Antimicrob. Agents Chemother. 2007, 51,
275; (b) Sheehan, D. J.; Hitchcock, C. A.; Sibley, C. M. Clin. Microbiol. Rev. 1999,
12, 40; (c) Oliaro-Bosso, S.; Viola, F.; Taramino, S.; Tagliapietra, S.; Barge, A.;
Cravotto, G.; Balliano, G. Chem. Med. Chem. 2007, 2, 226; (d) Buckner, F. S.;
Griffin, J. H.; Wilson, A. J.; van Voorhis, W. C. Antimicrob. Agents Chemother.
2001, 45, 1210; (e) Nes, W. D. Biochim. Biophys. Acta 2000, 1529, 63; (f) Visbal,
G.; Alvarez, A.; Moreno, B.; San-Blas, G. Antimicrob. Agents Chemother. 2003, 47,
2966.
2. (a) Braga, M. V.; Magaraci, F.; Lorente, S. O.; Gilbert, I.; de Souza, W. Microsc.
Microanal. 2005, 11, 506; (b) Buckner, F.; Yokoyama, K.; Lockman, J.; Aikenhead,
K.; Ohkanda, J.; Sadilek, M.; Sebti, S.; van Voorhis, W.; Hamilton, A.; Gelb, M. H.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15149.
3. (a) Hinshaw, J. C.; Suh, D.-Y.; Garnier, P.; Buckner, F. S.; Eastman, R. T.; Matsuda,
S. P. T.; Joubert, B. M.; Coppens, I.; Joiner, K. A.; Merali, S.; Nash, T. E.; Prestwich,
G. D. J. Med. Chem. 2003, 46, 4240; (b) Galli, U.; Oliaro-Bosso, S.; Taramino, S.;
Venegoni, S.; Pastore, E.; Tron, G. C.; Balliano, G.; Viola, F.; Sorba, G. Bioorg. Med.
Chem. Lett. 2007, 17, 220.
4. (a) Kirchhoff, L. V. N. Engl. J. Med. 1993, 329, 639; (b) Morel, C. M. Parasitol.
Today 2000, 16, 522.
5. (a) Croft, S. L. Parasitology 1997, 114, S3; (b) Croft, S. L.; Barret, M. P.; Urbina, J.
A. Trends Parasitol. 2005, 21, 508.
Acknowledgments
We thank the University of Turin and the regional government
(Regione Piemonte) for the financial support of this research.