ORGANIC
LETTERS
2002
Vol. 4, No. 3
435-437
One-Step Synthesis of
3,5-Disubstituted-2-pyridylpyrroles from
the Condensation of 1,3-Diones and
2-(Aminomethyl)pyridine
Jamie J. Klappa, Autumn E. Rich, and Kristopher McNeill*
Department of Chemistry, UniVersity of Minnesota, 207 Pleasant Street SE,
Minneapolis, Minnesota 55455
Received November 29, 2001
ABSTRACT
3,5-Disubstituted- and 3,4,5-trisubstituted-2-(2-pyridyl)pyrroles may be synthesized efficiently from the novel condensation of 2-(aminomethyl)-
pyridine and 1,3-diones. The cyclization reaction was found to proceed through the intermediacy of a (2-pyridyl)methylimine. A marked dependence
of the regioselectivity in the reaction of unsymmetrical diones on the presence of additional aminomethylpyridine suggests that two pathways
to the product pyrroles are available.
2-(2-Pyridyl)pyrroles are a potentially useful class of com-
pounds. In separate studies, they have been shown to be
antioxidants,1 P38 kinase inhibitors,2 and prolyl-4-hydroxy-
lase inhibitors.3 Because of their structural similarity to other
R-diimine ligands such as 2,2′-bipyridine, there has also been
significant interest in the metal-binding properties of 2-(2-
pyridyl)pyrroles.4-8 There are many synthetic routes to these
compounds; however, most of them entail many steps and
low yields are normally obtained.9-16 Through our attempts
to prepare bis-N-(pyridylmethyl)-1,3-diimines as ligands for
transition metal complexation, we have discovered a novel
route to pyridylpyrroles involving 2-(aminomethylpyridine)
1 and 1,3-diones.
Heating a xylene solution of 1, 2, 0.1 equiv p-CH3C6H4-
SO3H, and molecular sieves at 170 °C for 8 h resulted in
conversion to 3,5-dimethyl-2-(2-pyridyl)pyrrole 12 (Scheme
1, Table 1). The reaction was found to be tolerant of a range
of R groups with different steric demands, including phenyl,
trifluoromethyl, and tert-butyl groups (Table 1). Unfortu-
nately, our attempts to perform the reaction of 2-aryl-1,3-
dialdehydes resulted in only small amounts of the desired
products. The reaction appears to proceed through the
(1) Lehuede, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.;
Vierfond, J.-M. Eur. J. Med. Chem. 1999, 34, 991-996.
(2) de Laszlo, S. E.; Visco, D.; Agarwal, L.; Chang, L.; Chin, J.; Croft,
G.; Forsyth, A.; Fletcher, D.; Frantz, B.; Hacker, C.; Hanlon, W.; Harper,
C.; Kostura, M.; Li, B.; Luell, S.; MacCoss, M.; Mantlo, N.; O’Neill, E.
A.; Orevillo, C.; Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Sidler, K.;
Widmer, W. R.; O’Keefe, S. J. Bioorg. Med. Chem. Lett. 1998, 8, 2689-
2694.
(3) Dowell, R. I.; Hales, N. J.; Tucker, H. Eur. J. Med. Chem. 1993, 28,
513-516.
(4) Wu, F.; Chamchoumis, C. M.; Thummel, R. P. Inorg. Chem. 2000,
39, 584-590.
(5) Chiswell, B. Inorg. Chim. Acta 1972, 6, 629-634.
(6) Jena, S.; Rath, N.; Dash, K. C. Indian J. Chem., Sect. A: Inorg.,
Bio-inorg., Phys., Theor. Anal. Chem. 1999, 38A, 350-354.
(7) Perry, C. L.; Weber, J. H. J. Inorg. Nucl. Chem. 1971, 33, 1031-
1039.
(8) Liu, S. F.; Wu, Q.; Schmider, H. L.; Aziz, H.; Hu, N. X.; Popovic,
Z.; Wang, S. J. Am. Chem. Soc. 2000, 122, 3671-3678.
(9) Petrova, O. V.; Mikhaleva, A. I.; Sobenina, L. N.; Shmidt, E. Y.;
Kositsina, E. I. Russ. J. Org. Chem. 1997, 33, 11007-1009.
(10) Firl, J. Chem. Ber. 1968, 101, 218-225.
(11) Seki, K.; Ohkura, K.; Terashima, M.; Kanaoka, Y. Heterocycles
1984, 22, 2347-2350.
(12) Savoia, D.; Concialini, V.; Roffia, S.; Tarsi, L. J. Org. Chem. 1991,
56, 1822-1827.
(13) Bean, G. P. In Pyrroles: Part 1; Jones, R. A., Ed.; John Wiley &
Sons: New York, 1990; Vol. 48, pp 105-294.
(14) Emmert, B.; Brandl, F. Chem. Ber. 1927, 60, 2211-2216.
(15) Wibaut, J. P.; Dingemanse, E. Recl. TraV. Chim. 1923, 42, 1033-
1049.
(16) Wibaut, J. P. Recl. TraV. Chim. 1926, 45, 657-670.
10.1021/ol017147v CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/11/2002