1786
M. Moreno-Mañas et al.
LETTER
carbenes, [RuCl2(CO)3]2 or palladacyclopentadiene
derivatives see: (a) Katz, T. J.; Sivavec, T. M. J. Am. Chem.
Soc. 1985, 107, 737. (b) Sivavec, T. M.; Katz, T. J.; Chiang,
M. Y.; Yang, G. X.-Q. Organometallics 1989, 8, 1620.
(c) Mori, M.; Watanuki, S. J. Chem. Soc., Chem. Commun.
1992, 1082. (d) Chatani, N.; Morimoto, T.; Muto, T.; Murai,
S. J. Am. Chem. Soc. 1994, 116, 6049. (e) Trost, B. M.;
Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636.
(f) Trost, B. M.; Trost, M. K. Tetrahedron Lett. 1991, 32,
3647. (g) Trost, B. M.; Trost, M. K. J. Am. Chem. Soc. 1991,
113, 1850.
resulting solution extracted with hexane. The aqueous phase
was acidified with 6 M HCl and extracted with CH2Cl2. The
organic layer was washed with water, it was dried with
anhydrous Na2SO4 and the solvent was evaporated to give
1d (664 mg, 66% yield) as an oil; 1H NMR (CDCl3, 250
MHz) = 8.02 (dd, J = 8.5, 1.6 Hz, 1 H), 7.50 (dd, J = 7.3,
1.6 Hz, 1 H), 6.94 (dd, J = 8.5, 7.3 Hz, 1 H), 6.09–5.93 (m,
1 H), 5.18–5.09 (m, 2 H), 3.50 (d, J = 6.5 Hz, 2 H); 13C NMR
(CDCl3, 62.5 MHz) = 153.0, 137.2, 134.8, 133.4, 131.1,
122.8, 119.2, 116.5, 33.3; IR (film) 3215, 1610, 1540, 1451,
1334, 1249 cm-1; MS (EI) m/z (%) = 179 (M+, 53), 162 (100),
132 (88), 131 (68), 104 (22), 103 (58), 77 (64).
(6) For some earlier reports on ring closing enyne metathesis
with Grubbs ruthenium alkylidenes see: (a) Kinoshita, A.;
Mori, M. Synlett 1994, 1020. (b) Kim, S.-H.; Bowden, N.;
Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801.
(c) Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356.
(7) (a) Schürer, S. C.; Blechert, S. Chem. Commun. 1999, 1203.
(b) Zheng, G.; Dougherty, T. J.; Pandey, R. K. Chem.
Commun. 1999, 2469. (c) Schürer, S. C.; Blechert, S. Synlett
1999, 1879. (d) Schürer, S. C.; Blechert, S. Tetrahedron
Lett. 1999, 40, 1877. (e) Kotha, S.; Halder, S.;
Brahmachary, E.; Ganesh, T. Synlett 2000, 853. (f) Smulik,
J. A.; Diver, S. T. Tetrahedron Lett. 2001, 42, 171.
(8) (a) Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem.
1998, 63, 6082. (b) Heerding, D. A.; Takata, D. T.; Kwon,
C.; Huffman, W. F.; Samanen, J. Tetrahedron Lett. 1998, 39,
6815. (c) Kotha, S.; Sreenivasachary, N.; Brahmachary, E.
Tetrahedron Lett. 1998, 39, 2805. (d) Kotha, S.;
Sreenivasachary, N. Chem. Commun. 2000, 503. (e) Lane,
C.; Snieckus, V. Synlett 2000, 1294. (f) Kotha, S.;
Sreenivasachary, N.; Brahmachary, E. Eur. J. Org. Chem.
2001, 787. (g) Duboc, R.; Hénaut, C.; Savignac, M.; Genet,
J. P.; Bhatnagar, N. Tetrahedron Lett. 2001, 42, 2461.
(h) Sémeril, D.; Le Nôtre, J.; Bruneau, C.; Dixneuf, P. H.;
Kolomiets, A. F.; Osipov, S. N. New. J. Chem. 2001, 25, 16.
(9) Hoye, T. R.; Donaldson, S. M.; Vos, T. J. Org. Lett. 1999, 1,
277.
(15) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem. Int. Ed. Engl. 1995, 34, 2039.
(16) After evaporation of CH2Cl2 and flash chromatography on
SiO2 (cyclohexane–CH2Cl2, 5:1) diene 3a was obtained in
41% yield as an oil; 1H NMR (CDCl3, 250 MHz) = 7.28–-
7.02 (m, 4 H), 6.24 (dd, J = 17.7, 11.2 Hz, 1 H), 5.97 (td, J =
5.6, 0.6 Hz, 1 H), 4.93 (d, J = 11.3 Hz, 1 H), 4.91 (d, J = 17.7
Hz, 1 H), 4.81 (d, J = 1.8 Hz, 2 H), 3.59 (d, J = 5.6 Hz, 1 H);
MS (EI) m/z (%) = 173 (13), 172 (M+, 100), 171 (32), 157
(48), 145 (28), 144 (28).
(17) Preparation of 2,3,3a,4,6,12,12a,12b-octahydro-1H-
benzo[6,7]-oxepino[4,3-e]isoindole-1,3-dione, 7: A solution
of 2a (0.510 g, 2.9 mmol) and Grubbs’ catalyst (85 mg,
0.11 mmol) in degassed CH2Cl2 (60 mL) was stirred under
nitrogen at r.t. for 5 h. Then, a solution of maleimide
(0.320 g, 3.3 mmol) in CH2Cl2 (10 mL) was added and the
mixture refluxed for 4 days. The solvent was evaporated and
the crude oily residue was flash chromatographed on SiO2.
Elution with hexane–EtOAc 9:1 afforded 7 as a white solid
(0.410 g, 51%); 1H NMR (400 MHz, CDCl3): = 7.79 (br s,
1 H), 7.09 (br t, J = 8.2 Hz, 2 H), 7.03 (d, J = 7.6 Hz, 1 H),
6.81 (br t, J = 7.3 Hz, 1 H), 6.77 (d, J = 7.9 Hz, 1 H), 6.06–
6.04 (m, 1 H), 5.09 (d, J = 13.2 Hz, 1 H), 4.31 (d, J = 12.6
Hz, 1 H), 4.16 (apparent t, J ca 13.7 Hz, 1 H), 3.29–3.20 (m,
2 H), 2.91 (br d, J ca 13 Hz, 1 H), 2.81 (dd, J = 15.8, 2.9 Hz,
1 H), 2.76 (dd, J = 15.5, 7.1 Hz, 1 H), 2.23 (br d, J ca 15.5
Hz, 1 H); 13C NMR (62.5 MHz, CDCl3): = 180.1, 178.4,
156.8, 140.7, 132.7, 128.5, 126.7, 125.4, 121.4, 119.4, 70.3,
46.0, 41.9, 38.9, 34.5, 24.6; IR (KBr) 3244, 1781, 1720,
1694 cm-1; MS (EI) m/z (%) = 270 (8), 269 (M+, 45), 172
(23), 171 (68), 107 (100), 91 (50), 77 (21).
(18) The structural assignments were based on the data obtained
from 1H and 13C NMR on compound 7: COSY, DEPT and
HMBC experiments were used to assign the proton and
carbon signals of the spectra. NOE experiments showed a
relative cis configuration between all three methinic protons
(H12a, H12b, and H3a). Coupling constants are in agreement
with this assignment. The methinic proton H12a (2.91 ppm, br
d, J ca 13.7 Hz) shows a large J value with one of the protons
at C-12 (at 4.16 ppm), and two other small J values due to
the coupling with the other proton at C-12 (at 2.81 ppm) and
with the H12b (in a relative cis position).
(10) Ackermann, L.; Bruneau, C.; Dixneuf, P. H. Synlett 2001,
397.
(11) Renaud, J.; Graf, C.-D.; Oberer, L. Angew. Chem. Int. Ed.
2000, 39, 3101.
(12) Bentz, D.; Laschat, S. Synthesis 2000, 1766.
(13) Stefinovic, M.; Snieckus, V. J. Org. Chem. 1998, 63, 2808.
(14) o-Nitrophenol (2.1 g, 15.1 mmol) was added to a suspension
of K2CO3 (3.14 g, 23.1 mmol) in acetone (40 mL) and the
mixture was refluxed for 30 min. Then, allyl bromide (1.7
mL, 2.4 g, 19.6 mmol) was added and the mixture was
maintained under reflux for 16 h. After addition of H2O (30
mL), the solution was extracted with CH2Cl2. The organic
phase was dried with anhydrous Na2SO4 and the solvent was
evaporated to give 1-allyloxy-2-nitrobenzene (2.36 g, 87%
yield) as an oil. This compound (1.00 g, 5.6 mmol) was
heated at 170 °C for 45 h (GC monitoring). A 5 M aqueous
solution of NaOH was added to the crude mixture and the
Synlett 2001, No. 11, 1784–1786 ISSN 0936-5214 © Thieme Stuttgart · New York