Journal of the American Chemical Society
Article
(5) (a) Cai, W.; Colony, J. L.; Frost, H.; Hudspeth, J. P.; Kendall, P.
M.; Krishnan, A. M.; Maskowski, T.; Mazur, D. J.; Phillips, J.; Brown
Ripin, D. H.; Gut Ruggeri, S.; Stearns, J. F.; White, T. D. Org. Process
Res. Dev. 2005, 9, 51−56. (b) Ye, Z.-S.; Chen, M.-W.; Chen, Q.-A.; Shi,
L.; Duan, Y.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2012, 51, 10181−
10184. (c) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem.
Rev. 2012, 112, 2557−2590. (d) Iimuro, A.; Yamaji, K.; Kandula, S.;
Nagano, T.; Kita, Y.; Mashima, K. Angew. Chem., Int. Ed. 2013, 52,
2046−2050. (e) Romanov-Michailidis, F.; Sedillo, K. F.; Neely, J. M.;
Rovis, T. J. Am. Chem. Soc. 2015, 137, 8892−8895.
(19) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652. (b) Lee,
C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys.
1988, 37, 785−789. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys.
1980, 58, 1200.
(20) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724−728. (b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys.
1984, 80, 3265−3269.
̀
(21) (a) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997,
107, 3032−3041. (b) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008,
120, 215−241.
(22) Additional calculations using cis- and trans-2-phenyl-3-
hydroxypiperidine showed a similar trend as the model, cis- and
trans-2,3-dimethylpiperidine. For instance the enthalpic energy
difference (in solvent) between cis-2-phenylpiperidin-3-ol was
computed to be 1.7 kcal/mol vs only 0.4 kcal/mol for the
corresponding trans diastereomer. This calculation is in excellent
agreement with experiment for kinetic resolution of the cis- and trans-
2- phenylpiperidin-3-ol systems (Table 2, entries 1 and 2) which
exhibited s values of 24 and 1, respectively.
(6) (a) Pablo, O.; Guijarro, D.; Yus, M. J. Org. Chem. 2013, 78,
̀
9181−9189. (b) Launay, G. G.; Slawin, A. M. Z.; OHagan, D. Beilstein
J. Org. Chem. 2010, 6, 41.
(7) (a) Chen, S.; Mercado, B. Q.; Bergman, R. G.; Ellman, J. A. J. Org.
Chem. 2015, 80, 6660−6668. (b) Duttwyler, S.; Chen, S.; Lu, C.;
Mercado, B. Q.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed.
2014, 53, 3877−3880. (c) Ischay, M.; Takase, M. K.; Bergma, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 2478−2481. (d) Duttwyler,
S.; Chen, S.; Takase, M. K.; Wiberg, K. B.; Bergman, R. G.; Ellman, J.
A. Science 2013, 339, 678−682.
(8) (a) Mittal, N.; Lippert, K. M.; De, C. K.; Klauber, E. G.; Emge, T.
J.; Schreiner, P. R.; Seidel, D. J. Am. Chem. Soc. 2015, 137, 5748−5758.
(b) De, C. K.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2009, 131,
17060−17061. (c) Klauber, E. G.; De, C. K.; Shah, T. K.; Seidel, D. J.
Am. Chem. Soc. 2010, 132, 13624−13626. (d) Yang, X.; Bumbu, V. D.;
Liu, P.; Li, X.; Jiang, H.; Uffman, E. W.; Guo, L.; Zhang, W.; Jiang, X.;
Houk, K. N.; Birman, V. B. J. Am. Chem. Soc. 2012, 134, 17605−
17612. (e) Fu, G. C. Acc. Chem. Res. 2000, 33, 412−420. (f) Fu, G. C.
Acc. Chem. Res. 2004, 37, 542−547. (g) Fowler, B. S.; Mikochick, P. J.;
Miller, S. J. J. Am. Chem. Soc. 2010, 132, 2870−2871. (h) Birman, V.
B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc.
2004, 126, 12226−12227. (i) Li, X.; Liu, P.; Houk, K. N.; Birman, V.
B. J. Am. Chem. Soc. 2008, 130, 13836−13837. (j) Brown, M. K.;
Blewett, M. M.; Colombe, J. R.; Corey, E. J. J. Am. Chem. Soc. 2010,
132, 11165−11170. (k) Larionov, E.; Mahesh, M.; Spivey, A. C.; Wei,
Y.; Zipse, H. J. Am. Chem. Soc. 2012, 134, 9390−9399.
(9) (a) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal.
2001, 343, 5−26. (b) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.;
Keßeler, M.; Sturmer, R.; Zelinski, T. Angew. Chem. 2004, 116, 806−
̈
843; Angew. Chem., Int. Ed. 2004, 43, 788−824.
(10) Binanzer, M.; Hsieh, S.-Y.; Bode, J. W. J. Am. Chem. Soc. 2011,
133, 19698−19701.
(11) Hsieh, S.-Y.; Binanzer, M.; Kreituss, I.; Bode, J. W. Chem.
Commun. 2012, 48, 8892−8894.
(12) Allen, S. E.; Hsieh, S.-Y.; Gutierrez, O.; Bode, J. W.; Kozlowski,
M. C. J. Am. Chem. Soc. 2014, 136, 11783−11791.
(13) Kreituss, I.; Murakami, Y.; Binanzer, M.; Bode, J. W. Angew.
Chem., Int. Ed. 2012, 51, 10660−10663.
(14) For the purposes of method development and study, we
performed the kinetic resolutions under conditions that allow for
accurate calculations of the relative rates. At longer reaction times, the
hydroxyenone and stochiometric reagent can undergo side reactions.
This protocol explains the low conversion even with full consumption
of the reagent with slow-reacting substrates. For preparative work, the
resolutions are allowed to proceed to higher conversion, which affords
virtually enantiopure recovered amines. As a guideline, s = 20 can
deliver > 99% ee at 62% conversion. See Vedejs, E.; Jure, M. Angew.
Chem. 2005, 117, 4040−4069; Angew. Chem., Int. Ed. 2005, 44, 3974−
4001 for a discussion.
(15) Calculated according to: Kagan, H. B.; Fiaud, J. C. Top.
Stereochem. 1988, 18, 249−330.
(16) Hsieh, S.-Y.; Wanner, B.; Wheeler, P.; Beauchemin, A. M.;
Rovis, T.; Bode, J. W. Chem.Eur. J. 2014, 20, 7228−7231.
(17) All calculations were carried out using Gaussian 09, revision
D.01.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A. et al. Gaussian 09, revision D.01; Gaussian, Inc.:
Wallingford CT, 2013.
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX