9620
tin, we carefully assessed the product of Entry 2 by using 19F NMR spectroscopy with the CF3
group of the monotosylated product as an internal standard. The 19F NMR spectrum of the
crude product prior to any purification showed seven peaks: one for the CF3 group of the
tosylate and six for the CF2 groups (5) and CF3 (1) of 2b in the expected 50:1 ratio. The mixture
was then divided into two equal parts, one of which was purified by liquid–liquid extraction and
the other of which was purified by solid–liquid extraction. Each of these final products showed
only one peak in its 19F NMR spectrum, which corresponded to the CF3 group of the tosylate;
the resonances of 2b were no longer detectable.
Fluorous tin oxide 2b is easy to make and handle, and the preliminary results suggest that it
will be a valuable alternative to the standard dibutyltin oxide 2a in both catalytic and
stoichiometric procedures. Accordingly, we recommend that the fluorous tin oxide be used in the
catalytic sulfonylation procedure of Martinelli and be tried on other procedures where dibutyltin
oxide is usually the reagent of choice.
Acknowledgements
This work was supported by grants from the National Institutes of Health. Brian Bucher
thanks the ACS Division of Fluorine Chemistry for a Moisson Undergraduate Summer
Research Fellowship.
References
1. (a) Shanzer, A. Tetrahedron Lett. 1980, 21, 221. (b) David, S.; Hanessian, S. Tetrahedron 1985, 41, 643. (c)
O’Donnel, C. J.; Burke, S. D. J. Org. Chem. 1998, 63, 8614. (d) Leigh, D. A.; Martin, R. P.; Smart, J. P.;
Truscello, A. M. J. Chem. Soc., Chem. Commun. 1994, 1373. (e) Reginato, G.; Ricci, A.; Roelens, S.; Scapecchi,
S. J. Org. Chem. 1990, 55, 5132.
2. (a) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworth: London, UK, 1987; p. 342. (b)
Davies, A. G. Organotin Chemistry; VCH: Weinheim, Germany, 1997; p. 176. (c) Chemistry of Tin, 2nd ed.;
Smith, P. J., Ed.; Blackie: London, UK, 1997; p. 290.
3. Rajanbabu, T. V. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York,
1995; Vol. 3, p. 1629.
4. (a) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett.
1999, 1, 447. (b) Martinelli, M. J.; Vaidyanathan, R.; Van Khau, V. Tetrahedron Lett. 2000, 41, 3773.
5. (a) Curran, D. P.; Hadida, S. J. Am. Chem. Soc. 1996, 118, 2531. (b) Curran, D. P.; Hoshino, M. J. Org. Chem.
1996, 61, 6480. (c) Horner, J. H.; Martinez, F. N.; Newcomb, M.; Hadida, S.; Curran, D. P. Tetrahedron Lett.
1997, 38, 2783. (d) Hadida, S.; Super, M. S.; Beckman, E. J.; Curran, D. P. J. Am. Chem. Soc. 1997, 119, 7406.
(e) Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M.; Hadida, S.; Curran, D. P. Tetrahedron Lett. 1997, 38, 7883.
(f) Hoshino, M.; Degenkolb, P.; Curran, D. P. J. Org. Chem. 1997, 62, 8341. (g) Curran, D. P.; Luo, Z.;
Degenkolb, P. Bioorg. Med. Chem. Lett. 1998, 8, 2403. (h) Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M.; Luo,
Z. Y.; Curran, D. P. Tetrahedron Lett. 1999, 40, 2367. (i) Curran, D. P.; Hadida, S.; Kim, S.-Y. Tetrahedron
1999, 55, 8997. (j) Curran, D. P.; Hadida, S.; Kim, S.-Y.; Luo, Z. Y. J. Am. Chem. Soc. 1999, 121, 6607.
6. Curran, D. P.; Hadida, S.; He, M. J. Org. Chem. 1997, 62, 6714.
7. Full experimental details will be posted at http://preprint.chemweb.com/.
8. Kong, X.; Grindley, B.; Bakshi, P. K.; Cameron, T. S. Organometallics 1993, 12, 4881.
9. 1H NMR (300 MHz, acetone-d6): l 2.50–2.61 (broad band, 4H), 2.77–2.84 (t, 4H); 13C NMR (75 MHz,
acetone-d6) l 123.56–108.52 (m, 12C), 27.13 (m, 2C), 20.48 (t, 2C); 19F NMR (282 MHz, acetone-d6 with CFCl3)
l −125.69, −122.84, −122.35, −121.37, −115.17, −80.56; 119Sn NMR (111.8 MHz, CDCl3 with (CH3)4Sn) l
−59.1.