C. Palomo et al. / Tetrahedron Letters 42 (2001) 8955–8957
8957
OTBS
1. tBuMe2SiCl, Imidazol
DMF, r.t., 11h, 70%
H
OTBS
O
H
H
1M NaOCl, TEMPO (1mol%)
KBr, NaHCO3, pH=7
HO
O
11a
NBn
NBn
2. H2, Pd/C, EtOH
r.t., 16h, 90%
CH2Cl2-H2O, 0ºC, 1-5min
O
O
95%
12
13
tBuO
NH
O
OTBS
Ph
O
tBuO
Cbz-(L)-Ile, DCC, HOBt
H2NCH2CO2C(CH3)3
CH2Cl2, r.t., 16h
OTBS
O
O
N
H
CH2Cl2, r.t., 16h
75%
HN
O
HN
14
75%
Cbz N
H
15
Scheme 3. Synthesis of the tripeptide segment 15 present in lysobactin.
vation steps for peptide coupling. Accordingly, the
coupling of 13 with glycine tert-butyl ester afforded the
dipeptide product 14 in 75% yield without traces of
epimerized product at Ca.14 Subsequent N-debenzyla-
tion and further coupling with N-Cbz-Ille-OH under
standard peptide coupling conditions provided 15 in
75% yield. In summary, the general route presented
here, that makes use of a new non-racemic amino
malonic acid surrogate, broadens the usefulness of ear-
lier methodology for the access to a-amino acid N-car-
boxyanhydrides (NCAs) from non-amino acid
precursors, and applications to the synthesis of non-
trivial peptides arise.
8. For other surrogates of a-aminomalonic acid, see: (a)
Garner, P. Tetrahedron Lett. 1984, 25, 5855; (b) Lubell, W.
D.; Jamison, T. F.; Rapoport, H. J. Org. Chem. 1990, 55,
3511.
9. Krysan, D. J. Tetrahedron Lett. 1996, 36, 3303.
10. (a) Palomo, C.; Cabre, F.; Ontoria, J. M. Tetrahedron Lett.
1992, 33, 4819. Also see: (b) Jayaraman, M.; Deshmukh,
A. R.; Bhawal, B. M. Tetrahedron 1996, 52, 8989.
11. Weinreib, S. M.; Nahm, S. Tetrahedron Lett. 1981, 22,
3815.
12. Representative data: 11a: oil, [h]2D5=+57.6 (c=1, CH2Cl2);
1H NMR (l, ppm, CDCl3): 7.36–7.20 (m, 10H), 5.00 (d,
1H, J=11.5 Hz), 4.78 (d, 1H, J=15.3 Hz), 5.74 (d, 1H,
J=11.5 Hz), 4.73 (d, 1H, J=4.9 Hz), 4.10 (d, 1H, J=15.3
Hz), 4.00 (m, 1H), 3.43 (dd, 1H, 4.9, 5.1 Hz), 2.86 (d, 1H,
J=7.1 Hz), 1.21 (d, 3H, J=6.5 Hz); 13C NMR (l, ppm,
CDCl3): 167.5, 136.3, 135.0, 128.7, 128.5, 128.1, 128.0,
127.9, 127.7, 81.5, 73.1, 66.0, 60.5, 44.3, 20.0; 11b: oil,
Acknowledgements
1
[h]2D5=+12.6 (c=1, CH2Cl2); H NMR (l, ppm, CDCl3):
This work was financially supported by Gobierno
Vasco, Universidad del Pais Vasco and by Ministerio
de Ciencia y Tecnolog´ıa.
7.33–7.19 (m, 10H), 4.99 (d, 1H, J=11.7 Hz), 4.79–4.71 (m,
3H), 4.07 (d, 1H, J=15.2 Hz), 3.70 (m, 1H), 3.46 (m, 1H),
2.69 (d, 1H, J=7.7 Hz), 1.47 (m, 2H), 0.91 (t, J=7.3 Hz);
13C NMR (l, ppm, CDCl3): 167.6, 136.3, 135.0, 128.7,
128.5, 128.1, 127.9, 127.7, 81.6, 73.2, 71.2, 59.3, 44.3, 27.0,
1
References
10.2; 11c: oil, [h]D25=+67.6 (c=1, CH2Cl2); H NMR (l,
ppm, CDCl3): 7.34–7.20 (m, 10H), 5.01 (d, 1H, J=11.72
Hz), 4.78 (m, 3H), 4.04 (d, 1H, J=15.34 Hz), 3.61 (m, 2H),
2.73 (d, 1H, J=7.55 Hz), 1.76 (m, 1H), 0.89 (s, 3H), 0.86
(s, 3H); 13C NMR (l, ppm, CDCl3): 167.4, 136.3, 135.0,
128.7, 128.4, 128.2, 127.9, 127.7, 81.7, 74.4, 73.1, 57.1, 44.2,
1. Barret, G. C. In Amino Acids, Peptides and Proteins:
Specialist Periodical Reports; Davies, J. S., Ed.; The Royal
Society of Chemistry: London, 1997; Vol. 28, p. 1.
2. Tymiak, A. A.; McCornick, T. J.; Unger, S. E. J. Org.
Chem. 1989, 54, 1149.
31.1, 19.7, 17.2; 11d: oil, [h]2D5=+28.6 (c=1, CH2Cl2); H
1
3. (a) Salase, D. M.; Marino, J.; Jacobs, M. R. Antimicrob.
Agents Chemother. 1984, 25, 527; (b) Horowitz, H. W.;
Handwerger, S.; Van Horn, K. G.; Wormser, G. P. Lancet
1987, 2, 1329.
4. For another approach to the a-amino b-hydroxy acids of
lysobactin, see: Armaroli, S.; Cardillo, G.; Gentilucci, L.;
Gianotti, M.; Tolomelli, A. Org. Lett. 2000, 2, 1105.
5. (a) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Odriozola,
B.; Maneiro, E.; Miranda, J. I.; Urchegui, R. Chem.
Commun. 1996, 161; (b) Palomo, C.; Aizpurua, J. M.;
Ganboa, I.; Oiarbide, M. Pure Appl. Chem. 2000, 72, 1763.
6. For a review on NCAs, see: Kricheldorf, H. R. h-
Aminoacid N-Carboxy Anhydrides and Related Heterocy-
cles; Springer: Berlin, 1987.
NMR (l, ppm, CDCl3): 7.40–7.16 (m, 13H), 6.70 (m, 13H),
4.99 (d, 1H, J=11.5 Hz), 4.93 (dd, 1H, J=7.8, 4.4 Hz),
4.77 (d, 1H, J=11.5 Hz), 4.74 (d, 1H, J=4.7 Hz), 4.60 (d,
1H, J=14.8 Hz), 3.75 (dd, 1H, J=7.8, 4.8 Hz), 3.30 (d,
1H, J=14.8 Hz), 3.04 (d, 1H, J=4.6 Hz); 13C NMR (l,
ppm, CDCl3): 167.5, 140.5, 136.5, 134.7, 128.7, 128.5,
128.2, 128.1, 127.2, 81.8, 73.3, 73.0, 60.5, 44.2.
13. Prior attempts to effect carbinol inversion under the
Mitsonobu reaction conditions in related substrates invari-
ably led to yields below 50%. See: Mielgo, A., Doctoral
Thesis, San Sebastia´n, 1996, p. 106. In the present case,
direct conversion of 10 into 11 was not examined.
14. For some aspects on racemization during ring opening of
NCAs, see: (a) Sim, T. B.; Rapoport, H. J. Org. Chem.
1999, 64, 2532; (b) Palomo, C.; Oiarbide, M.; Landa, A.;
Linden, A. J. Org. Chem. 2001, 66, 4180.
7. Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M.
Eur. J. Org. Chem. 1999, 3223.