COMMUNICATIONS
(300 MHz, CDCl3, 258C) d 0.17(s, 72H), 0.22 (s, 54H), 2.23 (br m, 12H),
typical for those of [Pt(PR3)n] complexes; B. E. Mann, A. Musco, J.
Chem. Soc. Dalton Trans. 1980, 776.
3.33 (s, 4H), 6.64 (s, 4H); 31P NMR (120 MHz, CDCl3, 258C, 85% H3PO4)
d À44.1 (1JP, Pt 3865 Hz); 77Se NMR (57MHz, CDCl 3, 258C) d 582;
[17] Crystallographic data for 4b and 5b. 4b: C64H146P2PtS2Si14, M
1630.22, monoclinic, space group Cc (no. 9), a 40.121(8), b
9.130(3), c 23.740(6) ä, b 91.2201(19)8, V 8694(4) ä3, Z 4,
1
195Pt NMR (64 MHz, CDCl3, 258C, Na2PtCl6) d À5030 (dd, JPt,P
1
3865 Hz, JPt,Se 262 Hz); FAB MS: 1723 [M ]; elemental analysis calcd
(%) for C64H146P2PtSe2Si14: C 44.59, H 8.54; found: C 44.32, H 8.59.
1calcd 1.245 gcmÀ3
,
m 19.3 cmÀ1
R1 (wR2) 0.062 (0.146), T
,
93(2) K, GOF 1.00. 5b: C64H146P2PtSe2Si14, M 1724.02, monoclin-
Received: September 10, 2001 [Z17879]
ic, space group Cc (no. 9), a 40.213(2), b 9.1551(15), c
23.860(2) ä, b 89.0303(7)8, V 8782.8(17) ä3, Z 4, 1calcd
1.304 gcmÀ3
,
m 26.9 cmÀ1
,
R1 (wR2) 0.047(0.12)7,
T 93(2) K,
GOF 1.08. The intensity data were collected on a Rigaku Mercury
CCD diffractometer with graphite-monochromated MoKa radiation
(l 0.71070 ä). The structures were solved by direct methods with
SIR-97. The three methyl carbon atoms of the one trimethylsilyl group
on the Bbt group are disordered in 4b. In Figure 1, the minor part of
the disordered carbon atoms is omitted for clarity. The P2PtSe2 plane
and the four methyl carbon atoms bound to each phosphorus atom is
disordered in 5b. In Figure 2, the major orientation (96%) is
represented. All non-hydrogen atoms (except for the minor parts of
the disordered moieties in the cases of 4b and 5b) were refined
anisotropically. The final cycles of full-matrix least-squares refinement
were based on 16756 (4b) and 14928 (5b) observed reflections (all
data) and 761 (4b) and 821 (5b) variable parameters, respectively.
Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication
no. CCDC-169659 (4b) and -169660 (5b). Copies of the data can be
obtained free of charge on application to CCDC, 12 Union Road,
Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@
ccdc.cam.ac.uk).
[1] For reviews on transition metal polychalocogenido complexes, see:
a) J. W. Kois, Coord. Chem. Rev. 1990, 105, 195; b) M. A. Ansari, J. A.
Ibers, Coord. Chem. Rev. 1990, 100, 223; c) M. R. Dubois, Chem. Rev.,
1989, 89, 1; d) J. Wacher, Angew. Chem. 1989, 101, 1645; Angew.
Chem. Int. Ed. Engl. 1989, 28, 1613; e) A. M¸ller, E. Diemann, Adv.
Inorg. Chem. 1987, 89, 31; f) D. Coucouvanis, A. Hadjikyriacou, M.
Draganjac, M. G. Kanatzidis, O. Ileperuma, Polyhedron 1986, 5, 349;
g) A. M¸ller, Polyhedron 1986, 5, 323; h) M. Draganjac, T. B.
Rauchfuss, Angew. Chem. 1985, 97, 745; Angew. Chem. Int. Ed. Engl.
1985, 24, 742; i) A. M¸ller, E. Diemann, R. Jostes, H. Bˆgge, Angew.
Chem. 1981, 93, 957; Angew. Chem. Int. Ed. Engl. 1981, 20, 934.
[2] A. M¸ller, W. Jaegermann, J. H. Enemark, Coord. Chem. Rev. 1982,
46, 245, and references therein.
[3] a) R. F. Borch, M. E. Pleasants, Proc. Natl. Acad. Sci. USA 1979, 76,
6611; b) W. Weigand, R. W¸nsch, S. Dick, Z. Naturforsch. B 1996, 51,
1511; c) M. I. Djuran, E. L. M. Lempers, J. Reedijk, Inorg. Chem.
1991, 30, 2648; d) S. J. Berners-Price, P. W. Kuchel, Inorg. Biochem.
1990, 38, 305; e) E. L. M. Lempers, K. Inagaki, J. Reedijk, Inorg.
Chim. Acta 1988, 152, 201; f) V. K. Jain, Inorg. Chim. Acta 1987, 133,
261; g) B. Odenheimer, W. Wolf, Inorg. Chim. Acta 1982, 66, L41.
[4] P. Li, M. D. Curtis, Inorg. Chem. 1990, 29, 1242, and references therein.
[5] a) F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th ed.,
Wiley-Interscience, New York, 1988, Chap. 13 and 30; b) N. N.
Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon,
Oxford, UK, 1984, Chap. 15 and 16.
[18] W. D. Bonds, Jr., J. A. Ibers, J. Am. Chem. Soc. 1972, 94, 3413.
[19] J. Kuncheria, H. A. Mirza, H. A. Jenkins, J. J. Vittal, R. J. Puddephatt,
J. Chem. Soc. Dalton Trans. 1998, 285.
[20] a) C. Ratti, P. Richard, A. Tabard, R. Guilard, J. Chem. Soc. Chem.
Commun. 1989, 69; b) R. Guilard, C. Ratti, A. Tabard, P. Richard, D.
Dubois, K. M. Kadish, Inorg. Chem. 1990, 29, 2532.
[21] D. H. Farrar, K. R. Grundy, N. C. Payne, W. R. Roper, A. Walker, J.
Am. Chem. Soc. 1979, 101, 6577.
[6] a) K. A. Hofmann, F. Hˆchtlen, Ber. 1903, 36, 3090; b) P. E. Jones, J.
Katz, J. Chem. Soc. Chem. Commun. 1967, 842.
[22] A. P. Ginsberg, W. E. Lindsell, C. R. Sprinkle, K. W. West, R. L.
Cohen, Inorg. Chem. 1982, 21, 3666.
[23] C. E. Briant, M. J. Calhorda, T. S. A. Hor, N. D. Howells, D. M. P.
Mingos, J. Chem. Soc. Dalton Trans. 1983, 1325.
[24] L. Pauling, The Chemical Bond, Cornell University, Ithaca, NY, 1967,
p. 136.
[7] a) J. Chatt, D. M. P. Mingos, J. Chem. Soc. A 1970, 1243; b) D. Dudis,
J. P. Fackler, Jr., Inorg. Chem. 1982, 21, 3578; c) R. R. Gukathasan,
R. H. Morris, A. Walker, Can. J. Chem. 1983, 61, 2490.
[8] a) M. R. Lewtas, C. P. Morley, M. Di Vaira, Polyhedron 2000, 19, 751;
b) S. Ford, M. R. Lewtas, C. P. Morley, M. Di Vaira, Eur. J. Inorg.
Chem. 2000, 933.
[25] A. Shaver, M. El-khateeb, A.-M. Lebuis, Angew. Chem. 1996, 108,
2510; Angew. Chem. Int. Ed. Engl. 1996, 35, 2362.
[26] V. W.-W. Yam, P. K.-Y. Yeung, K.-K. Cheung, J. Chem. Soc. Chem.
Commun. 1995, 267.
[9] a) C. D. Cook, P.-T. Cheng, S. C. Nyburg, J. Am. Chem. Soc. 1969, 91,
2123; b) T. Kashiwagi, N. Yasuoka, N. Kasai, M. Kakudo, S. Takahashi,
N. Hagihara, Chem. Commun. 1969, 743; c) P.-T. Cheng, C. D. Cook,
S. C. Nyburg, K. Y. Wan, Can. J. Chem. 1971, 49, 3772.
[27] A. Bencini, M. Di Vaira, R. Morassi, P. Stoppioni, F. Mele, Polyhedron
1996,15, 751.
[28] As for dioxygen complexes of palladium and platinum, Otsuka has
reported that modified INDO calculations for [(H3P)2MO2] (M Pd,
Pt) showed a minimum of the total energy at the P-M-P bond angle of
1078; S. Otsuka, J. Organomet. Chem. 1980, 200, 191.
[10] J. S. Valentine, Chem. Rev. 1973, 73, 235.
[11] I.-P. Lorenz, J. Kull, Angew. Chem. 1986, 98, 27 6;Angew. Chem. Int.
Ed. Engl. 1986, 25, 261.
[12] a) N. Tokitoh, R. Okazaki, Adv. Organomet. Chem. 2001, 47, 121; b) R.
Okazaki, N. Tokitoh, Acc. Chem. Res. 2000, 33, 625; c) N. Tokitoh, N.
Kano, K. Shibata, R. Okazaki, Organometallics 1995, 14, 3121; d) T.
Matsumoto, N. Tokitoh, R. Okazaki, M. Goto, Organometallics 1995,
14, 1008; e) Y. Matsuhashi, N. Tokitoh, R. Okazaki, M. Goto, S.
Nagase, Organometallics 1993, 12, 1351; f) N. Tokitoh, H. Suzuki, T.
Matsumoto, Y. Matsuhashi, R. Okazaki, M. Goto, J. Am. Chem. Soc.
1991, 113, 7047.
[29] M. A. Ansari, J. A. Ibers, Inorg. Chem. 1989, 28, 4068.
[13] a) N. Tokitoh, Phosphorous Sulfur and Silicon, 1998, 136 138, 123;
b) M. Saito, N. Tokitoh, R. Okazaki, J. Am. Chem. Soc. 1997, 119,
11124.
[14] N. Tokitoh, Y. Arai, J. Harada, R. Okazaki, Chem. Lett. 1995, 959.
[15] Since phosphanes 1 were very air-sensitive in solution, 1 could not be
obtained in a pure state because of the contamination with trace
amounts of oxidized ArMe2P O during the course of workup and
purification. However, the structures of 1 were identified by NMR
spectroscopy and high resolution mass spectrometry (HRMS calcd for
1b; C32H73PSi7: 684.3835; found 684.3837).
[16] The intermediates 3a,b could be identified by 31P NMR spectroscopy
1
(120 MHz, C6D6, 258C, relative to 85% H3PO4) 3a: dP 0.9, JP,Pt
3974 Hz, 3b: dP 3.7, 1JP, Pt 3869 Hz. These values are in the range
138
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4101-0138 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 1