Fig. 23 Hysteresis loop for an antiferroelectric liquid crystal.
Wiley-VCH, Weinheim, 1998, vol 2B, pp. 665–691 and references
therein.
Overall decoupling of the layers and the incorporation of
lateral groups which weaken the lateral interactions will
4 P. Rudquist, J. P. F. Lagerwall, M. Buivydas, F. Gouda,
S. T. Lagerwall, N. A. Clark, J. E. Maclennan, R. Shao,
D. A. Coleman, S. Bardon, T. Bellini, D. R. Link, G. Natale,
M. A. Glaser, D. M. Walba, M. D. Wand and X. H. Chen,
J. Mater. Chem., 1999, 9, 1257.
destabilise the hysteresis loop and support
response to applied electric fields.
a V-shaped
5. Conclusion
5 C. C. Dong, M. Hird, J. W. Goodby, P. Styring and K. J. Toyne,
Ferroelectrics, 1996, 180, 245.
In conclusion for the results obtained on the various materials
studied several observations and property–structure activities
may be drawn:
6 S. J. Cowling, A. W. Hall and J. W. Goodby, Liq. Cryst., 2005, 32,
1483.
7 S. J. Cowling, A. W. Hall, J. W. Goodby, Y. Wang and
H. F. Gleeson, J. Mater. Chem., 2006, 16, 2181.
8 A. I. Stipetic, J. W. Goodby, M. Hird, Y. M. Raoul and
H. F. Gleeson, Liq. Cryst., 2006, 33, 819.
9 P. Lehmann, W. K. Robinson and H. J. Coles, Mol. Cryst. Liq.
Cryst., 1999, 328, 221.
10 W. K. Robinson, P. Lehmann and H. J. Coles, Mol. Cryst. Liq.
Cryst., 1999, 328, 229.
11 B. Musgrave, P. Lehmann and H. J. Coles, Mol. Cryst. Liq. Cryst.,
1999, 328, 309.
12 H. J. Coles, H. Owen, P. Hodge and J. Newton, Liq. Cryst., 1993,
15, 739.
13 A. S. Peterenko, PhD Thesis, University of Hull, 2002.
14 W. L. McMillan, Phys. Rev. A, 1973, 8, 1921.
15 I. Nishiyama, J. Yamamoto, J. W. Goodby and H. Yokoyama,
J. Mater. Chem., 2001, 11, 2690–2693.
16 I. Nishiyama, J. Yamamoto, J. W. Goodby and H. Yokoyama,
J. Mater. Chem., 2001, 11, 2690–2693.
17 I. Nishiyama, J. Yamamoto, J. W. Goodby and H. Yokoyama,
Ferroelectrics, 2002, 276, 255–265.
18 I. Nishiyama, J. Yamamoto, H. Yokoyama, S. Mery, D. Guillon
and J. W. Goodby, Trans. Mater. Res. Soc. Jpn., 2004, 29,
785–788.
19 A. D. L. Chandani, Y. Cui, S. S. Seomun, Y. Takanishi,
K. Ishikawa and H. Takazoe, Liq. Cryst., 1999, 26, 167.
20 S. T. Lagerwall, in Handbook of Liquid Crystals, ed. D. Demus,
J. Goodby, G. W. Gray, H.-W Speiss and V. Vill, Wiley-VCH,
Weinheim, 1998, vol 2B, p. 552.
1. The V-shape electrooptical response is a property of the
material placed in the surface-stabilised geometry, and can be
observed for switching in the ferroelectric smectic C* phase.
2. At the tip of the V-shaped switching curve, the uniform
polarization stabilised structure is likely to be formed accord-
ing to the mechanism described by models of the polarization
stabilised kink (PSK) and insulating layer structures.
3. The stability of the uniform state is greatly affected by the
chemical structure of the material. Functional groups intro-
duced onto the molecular core and chains may reduce the
polarization effect thereby resulting in domination by the
twisted state. In such cases, the V-shaped switching curve can
still be observed, however, the transmission at the tip of the V
does not become zero. An exception is the twisted structure
formed by high tilt materials.
References
1 W. A. Crossland, Electro-optical Bistability in Ferroelectric Liquid
Crystal Switching Devices for use in Displays and Real-time
Holography, 9th International Ferroelectric Liquid Crystal
Conference, Dublin, Ireland, 24–29 August, 2003, PL1.
2 S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi
and A. Fukuda, J. Mater. Chem., 1996, 6, 671.
21 L. M. Blinov, Physics of Liquid Crystals, Wiley-VCH, Weinheim,
1999.
3 K. Miyachi and A. Fukuda, in Handbook of Liquid Crystals, ed.
D. Demus, J. Goodby, G. W. Gray, H.-W. Speiss and V. Vill,
22 N. A. Clark, D. Coleman and J. E. Maclennan, Liq. Cryst., 2000,
27, 985.
782 | J. Mater. Chem., 2007, 17, 766–782
This journal is ß The Royal Society of Chemistry 2007