Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(5) (a) Shao, P.; Wang, S.; Chen, C.; Xi, C. Org. Lett. 2016, 18,
deuterium experiments, both hydrometalation of styrene and
insertion of F into styrene are irreversible.
2050; (b) Kawashima, S.; Aikawa, K.; Mikami, K. Eur. J. Org.
Chem. 2016, 2016, 3166.
(6) Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J.
Am. Chem. Soc. 2017, 139, 12161.
(7) Seo, H.; Liu, A.; Jamison, T. F. J. Am. Chem. Soc. 2017, 139,
13969.
(8) Meng, Q.-Y.; Wang, S.; König, B. Angew. Chem. Int. Ed.
2017, 56, 13426.
(9) (a) Li, S.; Yuan, W.; Ma, S. Angew. Chem. Int. Ed. 2011, 50,
2578; (b) Cao, T.; Yang, Z.; Ma, S. ACS Catal. 2017, 7, 4504.
(10) (a) Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem. Soc.
2014, 136, 17702; (b) Su, W.; Gong, T.-J.; Lu, X.; Xu, M.-Y.;
Yu, C.-G.; Xu, Z.-Y.; Yu, H.-Z.; Xiao, B.; Fu, Y. Angew.
Chem. Int. Ed. 2015, 54, 12957; (c) Sakae, R.; Hirano, K.;
Miura, M. J. Am. Chem. Soc. 2015, 137, 6460; (d) Xu, T.; Sha,
F.; Alper, H. J. Am. Chem. Soc. 2016, 138, 6629.
(11) Alper, H.; Hamel, N. J. Am. Chem. Soc. 1990, 112, 2803.
(12) (a) Molander, G. A.; Rivero, M. R. Org. Lett. 2002, 4, 107; (b)
Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noël, T. Angew.
Chem. Int. Ed. 2016, 55, 15549.
(13) (a) When using 4-vinylbenzonitrile or methyl 4-vinylbenzoate
as the starting material, only the Markovnikov product was ob-
tained (26% yield for 4-vinylbenzonitrile and 34% yield for
methyl 4-vinylbenzoate).
(14) (a) Semproni, S. P.; Milsmann, C.; Chirik, P. J. J. Am. Chem.
Soc. 2014, 136, 9211; (b) Kim, D. K.; Riedel, J.; Kim, R. S.;
Dong, V. M. J. Am. Chem. Soc. 2017, 139, 10208.
(15) (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Nature 2012, 492, 234; (b) Luo, J.; Zhang, J. ACS Catal. 2016,
6, 873.
(16) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014,
345, 433; (b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.;
Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437; (c)
Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D.
W. C. Nature 2016, 536, 322.
(17) Attempts to synthesize intermediate C were unsuccessful.
However, the reduction potentials of its analogues are known
and locate around -1.20 V (vs SCE), see (a) Klein, A.; Kaiser,
A.; Sarkar, B.; Wanner, M.; Fiedler, J. Eur. J. Inorg. Chem.
2007, 2007, 965; (b) Klein, A.; Budnikova, Y. H.; Sinyashin,
O. G. J. Organomet. Chem. 2007, 692, 3156; (c) Yakhvarov,
D. G.; Petr, A.; Kataev, V.; Büchner, B.; Gómez-Ruiz, S.; Hey-
Hawkins, E.; Kvashennikova, S. V.; Ganushevich, Y. S.; Mo-
rozov, V. I.; Sinyashin, O. G. J. Organomet. Chem. 2014, 750,
59. Thus, C or C′ should be easily reduced.
(18) (a) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am.
Chem. Soc. 2012, 134, 9106; (b) León, T.; Correa, A.; Martin,
R. J. Am. Chem. Soc. 2013, 135, 1221; (c) Liu, Y.; Cornella, J.;
Martin, R. J. Am. Chem. Soc. 2014, 136, 11212; (d) Menges, F.
S.; Craig, S. M.; Tötsch, N.; Bloomfield, A.; Ghosh, S.;
Krüger, H.-J.; Johnson, M. A. Angew. Chem. Int. Ed. 2016, 55,
1282.
In conclusion, we have developed a dual visible-light-Ni ca-
talysis accomplishing an operationally simple, mild and highly
regioselective hydrocarboxylation of aryl alkenes using CO2 as
the C1-feedstock. Particularly, employing different ligands can
promote selective Markovnikov and anti-Markovnikov hydro-
carboxylation of styrenes with tolerance of many functional
groups. Mechanistic investigations indicated that a H-NiLn
species is generated during the process and adds irreversible to
styrene. Further investigations on the reaction mechanism and
the development of an efficient version to realize anti-
Markovnikov hydrocarboxylation of electron-deficient sty-
renes are in progress.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, methods and product characterization.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
̈
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support from the German Science Foundation (DFG)
(GRK 1626, Chemical Photocatalysis) is acknowledged. We
thank Prof. Ruben Martin (Institute of Chemical Research of Cat-
alonia) and Prof. Tomislav Rovis (Columbia University) for valu-
able discussions and suggestions. We thank Dr. Rudolf Vasold
(University of Regensburg) for his assistance in GC-MS meas-
urements and Sebastian Sandl (University of Regensburg) for his
assistance in glovebox experiments.
REFERENCES
(1) (a) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88,
747; (b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.
2007, 107, 2365; (c) Correa, A.; Martín, R. Angew. Chem. Int.
Ed. 2009, 48, 6201; (d) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem.
Soc. Rev. 2011, 40, 2435; (e) Martín, R.; Kleij, A. W.
ChemSusChem 2011, 4, 1259; (f) Tsuji, Y.; Fujihara, T. Chem.
Commun. 2012, 48, 9956; (g) Sakakura, T.; Kohno, K. Chem.
Commun. 2009, 1312; (h) Liu, Q.; Wu, L.; Jackstell, R.; Beller,
M. Nat. Commun. 2015, 6, 5933. (i) Börjesson, M.; Moragas,
T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739; (j) Gui,
Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017,
10, 1337.
(2) (a) Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.;
Pietrzik, C. U.; Findlay, K. A.; Smith, T. E.; Murphy, M. P.;
Bulter, T.; Kang, D. E.; Marquez-Sterling, N.; Golde, T. E.;
Koo, E. H. Nature 2001, 414, 212; (b) Lolli, M. L.; Cena, C.;
Medana, C.; Lazzarato, L.; Morini, G.; Coruzzi, G.; Manarini,
S.; Fruttero, R.; Gasco, A. J. Med. Chem. 2001, 44, 3463; (c)
Takeda, T.; Kumar, R.; Raman, E. P.; Klimov, D. K. J. Phys.
Chem. B 2010, 114, 15394; (d) Rosario-Meléndez, R.; Yu, W.;
Uhrich, K. E. Biomacromolecules 2013, 14, 3542; (e) Lynagh,
T.; Romero-Rojo, J. L.; Lund, C.; Pless, S. A. J. Med. Chem.
2017, 60, 8192.
(19) (a) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manas-
sero, M. J. Chem. Soc., Chem. Commun. 1975, 636; (b) Ama-
tore, C.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 2819.
(3)
Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc.
2008, 130, 14936.
(4) Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012,
134, 11900.
ACS Paragon Plus Environment