68
G. Accorsi et al. / Tetrahedron Letters 43 (2002) 65–68
all the photoinduced processes occurring in fulleroden-
drimers 1–3.
7. For examples of phenylenevinylene dendrimers, see: (a)
Deb, S. K.; Maddux, T. M.; Yu, L. J. Am. Chem. Soc.
1997, 119, 9079–9080; (b) Meier, H.; Lehmann, M.;
Angew. Chem., Int. Ed. 1998, 37, 643–645; (c) Meier, H.;
Lehmann, M.; Kolb, U. Chem. Eur. J. 2000, 6, 2462–
2469.
8. For fullerene derivatives substituted with phenyl-
enevinylene dendrons, see: (a) Langa, F.; Gomez-
Escalonilla, M. J.; Diez-Barra, E.; Garcia-Martinez, J. C.;
de la Hoz, A.; Rodriguez-Lopez, J.; Gonzalez-Cortes, A.;
Lopez-Arza, V. Tetrahedron Lett. 2001, 42, 3435–3438;
(b) Segura, J. L.; Gomez, R.; Martin, N.; Luo, C.;
Swartz, A.; Guldi D. M. Chem. Commun. 2001, 707–708.
9. Compound 9 was prepared in four steps from 1,3,5-tri-
bromobenzene according to a previously reported proce-
dure, see: Nierengarten, J.-F.; Schall, C.; Nicoud, J.-F.
Angew. Chem., Int. Ed. 1998, 37, 1934–1937.
In conclusion, an efficient synthetic methodology for
preparation of OPV-terminated phenylenevinylene den-
dritic wedges has been developed. This enables us to
prepare building blocks for the construction of new
fullerodendrimers with light-harvesting properties. The
further functionalization of these fullerodendrimers
with a suitable electron donor is now underway to
produce a multicomponent artificial photosynthetic sys-
tem in which the photoinduced energy transfer to the
C60 core is followed by electron transfer.
Acknowledgements
10. Selected spectroscopic data for 1: 1H NMR (200 MHz,
25°C, CDCl3): 7.79 (broad d, J=8.5 Hz, 2H), 7.59 (d,
J=8.5 Hz, 2H), 7.50 (s, 8H), 7.13 (AB, J=16.5 Hz, 4H),
7.01 (AB, J=16.5 Hz, 2H), 6.72 (s, 2H), 5.01 (d, J=10
Hz, 1H), 4.95 (s, 1H), 4.28 (d, J=10 Hz, 1H), 4.03 (t,
J=6.5 Hz, 4H), 3.98 (t, J=6.5 Hz, 2H), 2.83 (s, 3H), 1.83
(m, 6H), 1.50–1.20 (m, 54H), 0.89 (t, J=6.5 Hz, 9H);
FAB-MS: 1712.6 (MH+); anal. calcd for C129H101NO3: C,
90.44; H, 5.94; N, 0.82; found C, 90.47; H, 6.13; N, 0.82.
This research was supported by the French Ministry of
Research (ACI Jeunes Chercheurs), a fellowship from
the DGA to J.-F.E. and a fellowship from the MIUR
(Legge 95/95) to G.A. Financial support from the joint
CNR-CNRS project ‘Supramolecular Fullerene Sys-
tems as Materials for Solar Energy Conversion’ is also
acknowledged. We further thank L. Oswald for techni-
cal help and M. Schmitt for recording the high field
NMR spectra.
1
For 2: H NMR (400 MHz, 25°C, CDCl3): 7.64 (s, 1H),
7.50 (m, 18H), 7.18 (s, 4H), 7.13 (s, 4H), 7.01 (AB,
J=16.5 Hz, 4H), 6.73 (s, 4H), 5.05 (d, J=10 Hz, 1H),
4.99 (s, 1H), 4.32 (d, J=10 Hz, 1H), 4.04 (t, J=6.5 Hz,
8H), 3.98 (t, J=6.5 Hz, 4H), 2.89 (s, 3H), 1.83 (m, 12H),
1.50–1.20 (m, 108H), 0.89 (t, J=6.5 Hz, 18H); FAB-MS:
2572.5 (M+); anal. calcd for C189H191NO6·H2O: C, 87.63;
H, 7.51; N, 0.54; found C, 87.69; H, 7.59; N, 0.56. For 3:
1H NMR (400 MHz, 100°C, C2D2Cl4): 8.02 (s, 2H), 7.77
(s, 1H), 7.50 (m, 38H), 7.34 (AB, J=16.5 Hz, 4H), 7.24
(AB, J=16.5 Hz, 8H), 7.18 (s, 8H), 7.03 (AB, J=16.5
Hz, 8H), 6.78 (s, 8H), 5.14 (d, J=10 Hz, 1H), 5.12 (s,
1H), 4.42 (d, J=10 Hz, 1H), 4.09 (t, J=6.5 Hz, 16H),
4.06 (t, J=6.5 Hz, 8H), 2.83 (s, 3H), 1.83 (m, 24H),
1.50–1.20 (m, 216H), 0.89 (t, J=6.5 Hz, 36H); MALDI-
TOF-MS: 4498 (M+); anal. calcd for C325H383NO12·
CHCl3: C, 84.84; H, 8.39; N, 0.30; found C, 85.09; H,
8.53; N, 0.29.
References
1. (a) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.;
Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26–34;
(b) Fisher, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. 1999,
38, 884–905; (c) Adronov, A.; Fre´chet, J. M. J. Chem.
Commun. 2000, 1701–1710; (d) Balzani, V.; Ceroni, P.;
Juris, A.; Venturi, M; Campagna, S.; Puntoriero, F.;
Serroni, S. Coord. Chem. Rev. 2001, 219–221, 545–572.
2. Guldi, D. M.; Torres-Garcia, G.; Mattay, J. J. Phys.
Chem. A 1998, 102, 9679–9685.
3. Armaroli, N.; Barigelletti, F.; Ceroni, P.; Eckert, J. F.;
Nicoud, J. F.; Nierengarten, J. F. Chem. Commun. 2000,
599–600.
4. Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu,
S.-G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.;
Ouali, L.; Krasnikov, V.; Hadziioannou, G. J. Am.
Chem. Soc. 2000, 122, 7467–7479.
11. (a) Seshadri, R.; Rao, C. N. R.; Pal, H.; Mukherjee, T.;
Mittal, J. P. Chem. Phys. Lett. 1993, 205, 395–398; (b)
Rath, M. C.; Pal, H.; Mukherjee, T. J. Phys. Chem. A
1999, 103, 4993–5002.
12. Peeters, E.; van Hal, P. A.; Knol, J.; Brabec, C. J.;
Sariciftci, N. S.; Hummelen, J. C.; Janssen, R. A. J. J.
Phys. Chem. B 2000, 104, 10174–10190.
5. Aldehyde 6 was prepared as previously reported, see:
Eckert, J.-F.; Nicoud, J.-F.; Guillon, D.; Nierengarten,
J.-F. Tetrahedron Lett. 2000, 41, 6411–6414.
6. Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519–
526.