C O M M U N I C A T I O N S
Scheme 2. Synthesis and Electrochemical Data of Hydroxamate
mass and additional single positive charge at the metal center. Full-
length extension is also observed with a longer template containing
multiple dA residues.19 Taken together, these experiments demon-
strate that the modified nucleotide is very well tolerated by the
polymerase at the triphosphate level as well as part of the growing
chain.20
Complexesa
These results demonstrate that octahedral Ru2+ and Os2+ com-
plexes are viable, diverse, and tunable redox-active tags for DNA
modification. The ability of DNA polymerase to efficiently incor-
porate the metal-containing nucleotide triphosphate suggests po-
tential use in DNA diagnostics.
Acknowledgment. We thank Motorola Clinical Micro Sensors,
the UC BioSTAR Project (Grant S99-41) and the National Institutes
of Health (Grant GM 58447) for generous support.
a Reagents and Conditions: (a) Br(CH2)5CO2Et, NaH, THF, -78 °C to rt,
88%; (b) (i) H2/Pd, 92%, (ii) C6Cl5OH, DCC, 85%, (iii) NH(OH)CH3, DMAP,
59%; (c) (R2bpy)2MCO3, 30-52%.
Supporting Information Available: Additional synthetic, analyti-
cal, and electrochemical data as well as details for enzymatic synthesis
of oligonucleotides (PDF). This material is available free of charge
Scheme 3. Synthesis of Triphosphate 10 (dRuTP)a
References
(1) Meldrum, D. R. Science 2001, 292, 515-517.
(2) For electronic detection of nucleic acids, see: Umek, R. M.; Lin, S. W.;
Vielmetter, J.; Terbrueggen, R. H.; Irvine, B.; Yu, C. J.; Kayyem, J. F.;
Yowanto, H.; Blackburn, G. F.; Farkas, D. H.; Chen, Y.-P. J. Mol. Diagn.
2001, 3, 74-84.
(3) For capillary electrophoresis chips with integrated electrochemical detec-
tion see: Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A. Anal.
Chem. 1998, 70, 684-688. For miniaturized electrochemical devices,
see: Bratten, C. D. T.; Cobbold, P. H.; Cooper, J. M. Anal. Chem. 1997,
69, 253-258.
(4) Electrochemical methods offer both high sensitivity and adaptability to
microfabrication, see: Fan, F.-F.; Bard, A. J. Science 1995, 267, 871-
874. Gavin, P. E.; Ewing, A. G. J. Am. Chem. Soc. 1996, 118, 8932-
8936.
a Reagents and conditions: DMF/dioxane/H2O, (iPr2)NEt, quantitative.
(5) Mori, K.; Subasinghe, C.; Cohen, J. S. FEBS Lett. 1989, 249, 213-218.
Kertesz, V.; Whittemore, N. A.; Inamati, G. B.; Manoharan, M.; Cook,
P. D.; Baker, D. C.; Chambers, J. Q. Electroanalysis 2000, 12, 889-894.
(6) Yu, C. J.; Wang, H.; Wan, Y.; Yowanto, H.; Kim, J. C.; Donilon, L. H.;
Tao, C.; Strong, M.; Choing, Y. J. Org. Chem. 2001, 66, 2937-2942.
Yu, C. J.; Yowanto, H.; Wan, Y.; Meade, T. J.; Chong, Y.; Strong, M.;
Donilon, L. H.; Kayyem, J. F.; Gozin, M.; Blackburn, G. F. J. Am. Chem.
Soc. 2000, 122, 6767-6768.
(7) For a review on metallorganic labels for DNA, see: Sloop, F. V.; Brown,
G. M.; Sachleben, R. A.; Garrity, M. L.; Elbert, J. E.; Jacobson, K. B.
New. J. Chem. 1994, 18, 317-326. For related DNA modifications:
Hurley, D. J.; Tor, Y. J. Am. Chem. Soc. 1998, 120, 2194-2195. Lewis,
F. D.; Helvoigt, S. A.; Letsinger, R. L. Chem. Commun. 1999, 327-328.
Khan, S. I.; Beilstein, A. E.; Grinstaff, M. W. Inorg. Chem. 1999, 38,
418-419. Rack, J. J.; Krider, E. S.; Meade, T. J. J. Am. Chem. Soc. 2000,
122, 6287-6288 and references therein.
(8) For end labeling, see: Anne, A.; Blanc, B.; Moiroux, J. Bioconjugate
Chem. 2001, 12, 396-405.
(9) Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. Am. Chem.
Soc. 1992, 114, 4701-4709; Seidel, C. A. M.; Schultz, A.; Sauer, M. H.
M. J. Phys. Chem. 1996, 100, 5541-5553; Steenken, S.; Jovanovic, S.
V. J. Am. Chem. Soc. 1997, 119, 617-618.
(10) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and
Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, 2001.
(11) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von
Zelewsky, A. Coord. Chem. ReV. 1988, 84, 85-277.
(12) Ghosh, P.; Chakravorty, A. Inorg. Chem. 1984, 23, 2242-2248
(13) See Supporting Information for additional experimental details.
(14) Collman, J. P. Angew. Chem., Int. Ed. Engl. 1965, 4, 132-138.
(15) Converting the terminal carboxylate to benzylamide does not affect the
E1/2 value of the complex.13
Figure 1. Enzymatic incorporation of a Ru2+ modified nucleotide dRuTP.
(Top): Template and 32P-labeled primer oligonucleotides. (Bottom): Primer
extension experiments using the Klenow fragment of DNA polymerase
resolved on a 20% PAGE. (Lanes 1 and 2): C and T sequencing lanes,
respectively. (Lane 3): Full-length product is generated in the presence of
all triphosphates. (Lane 4): No deleterious effect is observed in the presence
of all triphosphate and dRuTP. (Lane 5): Full-length product containing a
single Ru-containing base is observed. (Lane 6): Truncated product is
generated in the absence of dTTP and dRuTP.
cinimide active ester of the metal complex (Scheme 3).13 The
enzymatic incorporation of the modified base 10 was tested using
a 5′-32P-labeled 13-mer primer and a 22-mer template (Figure 1).17
Primer extension in the presence of all four dNTPs gives the expec-
ted full-length product (lane 3). Addition of dRuTP to the four dN-
TPs does not interfere with the enzymatic elongation process (lane
4). If dTTP is eliminated, premature termination occurs right after
the CGGC site, yielding an 18-mer product (lane 6). When dTTP
is replaced by dRuTP, only one band appears, and premature term-
ination is not observed (lane 5).18 The full-length 22-mer metal-
containing DNA displays a slower electrophoretic mobility when
compared to the corresponding native fragments due to the increased
(16) An analogous complex to 7, in which the hydroxamic acid is not substituted
[i.e., R-CON(OH)H], has been found to be unstable.13
(17) The template contains a single adenosine residue to unequivocally
determine the incorporation of the modified nucleotide and the generation
of a full-length product.
(18) A similar faint band also appears when dRuTP is mixed with dTTP in a
1:1 ratio (compare lanes 4 and 5), suggesting that the modified nucleotide
can compete to an extent with the native nucleotide for incorporation
opposite dA.
(19) Template: GCT-GAG-TGA-TAT-CGC-AGC-ATC-AGT-ACC.
(20) The ability of a polymerase to accept a modified dNTP as a substrate and
extend the growing chain beyond the modification site is significantly
more demanding than end labeling or chain termination.
JA017193Q
9
J. AM. CHEM. SOC. VOL. 124, NO. 8, 2002 1569