1890
J. M. Kelly et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1886–1890
5. Kennedy, P. G. Ann. Neurol. 2008, 64, 116.
brucei target enzymes may influence the efficiency of inhibitor
binding. Importantly, the selectivity implies that the trypanocidal
activity results from specific interaction(s), rather than from gen-
eral metal ion chelating properties. Therefore, the disparity in
activity profiles of these compounds against human and parasite
cells could be due, at least in part, to their differential abilities to
inhibit the corresponding HDACs, or other metalloproteins. Inter-
estingly, the two essential T. brucei HDACs (DAC 1 and 3) are diver-
gent, relative to their mammalian counterparts, as are their histone
substrates. The major differences lie in the amino and carboxyl
extensions beyond the more conserved catalytic core. There is also
a large (174 amino acid) insert within the core of the class II en-
zyme, DAC3.12 The structures of these enzymes have yet to be
determined. However, HDAC inhibitors typically function through
chelation of the active site zinc ion, and the DAC3 insert, as well
as the other differences, may have an impact on access to the active
site pocket for both substrates and inhibitors. It is notable here that
highly specific selective inhibitors have been identified for human
HDACs31,32 and the differences between the human and T. brucei
enzymes might also be exploited for the development of trypano-
some selective inhibitors.
6. Wilkinson, S. R.; Kelly, J. M. Exp. Rev. Mol. Med. 2009, 11, 1.
7. Ozdemir, A.; Masumoto, H.; Fitzjohn, P.; Verreault, A.; Logie, C. Cell Cycle 2006,
5, 2602.
8. Pinskaya, M.; Morillon, A. Epigenetics 2009, 4, 302.
9. Faraco, G.; Cavone, L.; Chiarugi, A. Mol. Med. 2011, 17, 442.
10. Shakespear, M. R.; Halili, M. A.; Irvine, K. M.; Fairlie, D. P.; Sweet, M. J. Trends
Immunol. 2011, 32, 335.
11. Kim, H. J.; Bae, S. C. Am. J. Transl. Res. 2011, 3, 166.
12. Ingram, A. K.; Horn, D. Mol. Microbiol. 2002, 45, 89.
13. Wang, Q. P.; Kawahara, T.; Horn, D. Mol. Microbiol. 2010, 77, 1237.
14. Siegel, T. N.; Hekstra, D. R.; Kemp, L. E.; Figueiredo, L. M.; Lowell, J. E.; Fenyo, D.;
Wang, X.; Dewell, S.; Cross, G. A. Genes Dev. 2009, 23, 1063.
15. Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.; Dulski, P. M.; Crumley, T. M.;
Allocco, J. J.; Cannova, C.; Meinke, P. T.; Colletti, S. L.; Bednarek, M. A.; Singh, S.
B.; Goetz, M. A.; Dombrowski, A. W.; Polishook, J. D.; Schmatz, D. M. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 13143.
16. Andrews, K. T.; Tran, T. N.; Wheatley, N. C.; Fairlie, D. P. Curr. Top. Med. Chem.
2009, 9, 292.
17. Guerrant, W.; Mwakwari, S. C.; Chen, P. C.; Khan, S. I.; Tekwani, B. L.; Oyelere, A.
K. ChemMedChem 2010, 5, 1232.
18. Sheader, K.; te Vruchte, D.; Rudenko, G. J. Biol. Chem. 2004, 279, 13363.
19. PCT Int. Appl. WO 2002030879 A2 20020418, 2002.
20. PCT Int. Appl. WO 2003082288 A2 20031009, 2003.
21. PCT Int. Appl. WO 2002026696 A2 20020404, 2002.
22. PCT Int. Appl. WO 2004076386 A2 20040910, 2004.
23. Andrianov, V.; Gailite, V.; Lola, D.; Loza, E.; Semenikhina, V.; Kalvinsh, I.; Finn,
P.; Dumong Petersen, K.; Ritchie, J. W. A.; Khan, N.; Tumber, A.; Collins, L. S.;
Vadlamudi, S. M.; Björkling, F.; Sehested, M. Eur. J. Med. Chem. 2009, 44, 1067.
24. Histone deacetylase activity was determined in lysed Human cervix epithelial
cancer HeLa cells. To determine the IC50 of test compound a commercially
available fluorescent assay kit was used employing an acetylated enzyme
substrate.23
In conclusion, by screening a library of compounds produced for
anti-cancer studies, we have identified leads with potential for
treating African trypanosomiasis. These data provide a platform
for the definitive identification of the target enzyme(s) within
the parasite and the informed design of more potent compounds
with optimised pharmacokinetic properties.
25. Huang, E. Y.; Zhang, J.; Miska, E. A.; Guenther, M. G.; Kouzarides, T.; Lazar, M. A.
Genes Dev. 2000, 14, 45.
26. Buggy, J. J.; Sideris, M. L.; Mak, P.; Lorimer, D. D.; McIntosh, B.; Clark, J. M.
Biochem. J. 2000, 350, 199.
27. Yang, W. M.; Yao, Y. L.; Sun, J. M.; Davie, J. R.; Seto, E. J. Biol. Chem. 1997, 272,
28001.
Acknowledgements
28. Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.;
Mills, E.; Bergs, S. C.; Carey, N.; Finn, P. W.; Collins, L. S.; Tumber, A.; Ritchie, J.
W.; Jensen, P. B.; Lichtenstein, H. S.; Sehested, M. Biochem. J. 2008, 409, 581–
589.
This work was supported by TopoTarget A/S and by a Wellcome
Trust Grant (No. 084175) to J.M.K.
29. Duque, M. D.; Camps, P.; Profire, L.; Montaner, S.; Vázquez, S.; Sureda, F. X.;
Mallol, J.; López-Querol, M.; Naesens, L.; De Clercq, E.; Prathalingam, S. R.;
Kelly, J. M. Bioorg. Med. Chem. 2009, 17, 3198.
References and notes
1. Barrett, M. P. Lancet 2006, 367, 1377.
2. Fèvre, E. M.; Wissmann, B. V.; Welburn, S. C.; Lutumba, P. PLoS Negl. Trop. Dis.
2008, 2(12), e333.
30. Growth inhibitory properties against cultured bloodstream form T. brucei were
determined as described previously.29 Experiments were performed in
triplicate and data are presented as SD.
3. African trypanosomiasis (Sleeping Sickness); Fact sheet No. 259, World Health
Organisation, Geneva, 2010.
31. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M. Proc. Natl. Acad. Sci.
U.S.A. 2003, 100, 4389.
4. Horn, D.; McCulloch, R. Curr. Opin. Microbiol. 2010, 13, 700.
32. Wong, J. C.; Hong, R.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 5586.