or eliminating exciplex formation between layers.4 Highly
electron-rich triphenylamines known for their high hole
mobility have been extensively used as hole-transporting
materials in OLEDs.5 It has been shown that light-emitting
polymers grafted or end-capped with triphenylamine moieties
exhibit improved OLED device performance.6 Furthermore,
highly electron-deficient triazole (TAZ) derivatives have been
demonstrated to have more efficient electron-transport and
hole-blocking characteristics and have a higher stability to
high current density than the oxadiazole derivatives (e.g.,
PBD) in OLEDs.7 Monodisperse oligofluorenes (OF) have
recently attracted much attention because of their chemical
and thermal stabilities and potential applications for opto-
electronic molecular materials, especially for blue-emitting
OLEDs devices.8 As part of our efforts to investigate the
structural factors of functional materials9 that can enhance
OLED performance and stability and toward the goal of
integrating three active components including hole-transport-
ing, electron-transporting, and light-emitting moieties into a
single molecule to simplify device fabrication and to improve
performance of resulting devices, we report herein the first
synthesis of bipolar oligofluorenes, TAZ-OF(n)-NPhs, n )
2 or 3, in which the blue emitting bi- or terfluorene core is
asymmetrically disubstituted with diphenylamino hole-
transporting moiety and electron-transporting triazole deriva-
tive forming a multifunctional molecule and the investigation
of their use in single-layer OLEDs. Meanwhile, to obtain
blue light-emitting materials, the strongly electron-withdraw-
ing triazole moiety must be decoupled with π-conjugated
system of the oligofluorene core which was thus linked at
the nonconjugated 3-position of the phenyl ring of the triazole
moiety. Because of the bipolar character, good luminescence
properties, high thermal stability, and good amorphous
morphological stability, TAZ-OF(n)-NPhs show great po-
tential for use as double charge carrier transport emitters in
OLEDs
The synthetic strategy for asymmetrically disubstituted
diphenylamine and triazole based bipolar oligofluorenes
TAZ-OF(n)-NPhs, n ) 2 or 3, is outlined in Scheme 1.
Scheme 1. Synthesis of Asymmetric Bipolar Oligofluorenes
TAZ-OF(n)-NPh
(3) (a) Tak, Y.-H.; Mang, S.; Greiner, A.; Ba¨ssler, H.; Pfeiffer, S.;
Ho¨rhold, H.-H. Acta Polym. 1997, 48, 450. (b) Li, X.-C.; Cacialli, F.; Giles,
M.; Gru¨ner, J.; Friend, R. H.; Holmes, A. B.; Moratti, S. C.; Yong, T. M.
AdV. Mater. 1995, 7, 898. (c) Li, X.-C.; Yong, T. M.; Gru¨ner, J.; Holmes,
A. B.; Moratti, S. C.; Cacialli, F.; Friend, R. H. Synth. Met. 1997, 84, 437.
(d) Chen, C.-T.; Lin, J.-S.; Moturu, M. V. R. K.; Lin, Y.-W.; Yi, W.; Tao,
Y.-T.; Chen, C.-H. Chem. Commun. 2005, 16, 3980. (e) Haung, T.-H.; Lin,
J.-T.; Chen, L.-Y.; Lin, Y.-T.; Wu, C.-C. AdV. Mater. 2006, 18, 602. (f)
Kulkarni, A. P.; Kong, X.; Jenekhe, S. AdV. Funct. Mater. 2006, 16, 1057.
(4) (a) Zhang, H.-Y.; Huo, C.; Zhang, J.-G.; Zhang, P.; Tian, W.-J.;
Wang, Y. Chem. Commun. 2006, 281.
(5) (a) Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1995, 66,
2679. (b) Strohriegl, P.; Grazulevicius, J. V. AdV. Mater. 2002, 14, 1439.
(6) (a) Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.;
Mu¨ller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. AdV. Mater. 2001, 13,
565. (b) Pu, Y. J.; Soma, M.; Kido, J.; Nishide, H. Chem. Mater. 2001, 13,
3817. (c) Shi, J.; Zheng, S. Macromolecules 2001, 34, 6571.
(7) (a) Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K. Jpn.
J. Appl. Phys. 1993, 32, L917. (b) Kido, J.; Hongawa, K.; Okuyama, K.;
Nagai, K. Appl. Phys. Lett. 1993, 63, 2627. (c) Kido, J.; Kimura, M.; Nagai,
K. Science 1995, 267, 1332. (d) Strukelj, M.; Papadimitrakopoulos, F.;
Miller, T. M.; Rothberg, L. J. Science 1995, 267, 1969. (e) Strukelj, M.;
Miller, T. M.; Papadimitrakopoulos, F.; Son, S. J. Am. Chem. Soc. 1995,
117, 11976. (f) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E.
Appl. Phys. Lett. 2000, 77, 904. (g) Yu, L.-S.; Chen, S.-A. AdV. Mater.
2004, 16, 744.
(8) (a) Pei, Q.; Yang, Y.J. Am. Chem. Soc. 1996, 118, 7416. (b)
Marsitzky, D.; Klapper, M.; Mu¨llen, K. Macromolecules 1999, 32, 8685.
(c) Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.;
Nothofer, H. G.; Scherf, U.; Yasuda, A. AdV. Mater. 1999, 11, 671.
(9) (a) Li, Z. H.; Wong, M. S.; Tao, Y.; D’Iorio, M. J. Org. Chem. 2004,
69, 921. (b) Li, Z. H.; Wong, M. S.; Tao, Y.; Lu, J. P. Chem.sEur. J.
2005, 11, 3285. (c) Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Chem.
Mater. 2005, 17, 5032. (d) Li, Z. H.; Wong, M. S. Org. Lett. 2006, 8, 1499.
Transformation of the dibromide 19b into the corresponding
2-(trimethylsilyl)-7-fluorenylboronic acid 2 was carried out
by a one-pot reaction affording a 52% overall yield. After
first lithium bromide exchange at -78 °C followed by
reaction with trimethylsilyl chloride at room temperature,
second lithium bromide exchange at -78 °C was subse-
quently proceeded and followed by reaction with trimethyl
borate and then acid hydrolysis. Reaction of 4-tert-butyl-
4272
Org. Lett., Vol. 8, No. 19, 2006