C O M M U N I C A T I O N S
Table 2. Functional Group Tolerance
the iminium ion to the product and the siloxane. This mechanistic
proposal is in agreement with the reaction of 1a with Ph2SiD2 where
both deuterium atoms are incorporated on the carbonyl carbon.
In conclusion, we have established for the first time a highly
chemoselective reduction of amides to the corresponding amines
with silanes in the presence of inexpensive zinc catalysts under
mild conditions. We expect our system will be useful for organic
synthesis allowing amide reduction without using protecting groups
and deprotection steps. Further studies on the application of primary
and secondary amides as well ester are ongoing in our laboratory
and will be reported in due course.
Acknowledgment. The authors thank Dr. W. Baumann, Dr. C.
Fischer, S. Buchholz, S. Schareina, A. Krammer, A. Koch, K.
Mevius, and S. Rossmeisl (all at the Leibniz-Institut fu¨r Katalyse
e.V. an der Universita¨t Rostock) for excellent analytical and
technical support.
a All reactions were performed on 1 mmol scale of the respective
amide. b Entries 4-7 were purified by column chromatography.
Scheme 1. Proposed Mechanism
Supporting Information Available: Experimental details and
spectroscopic and analytical data for all new compounds. This material
References
(1) (a) Modern Amination Method; Wiley: New York, 2000. (b) Modern
reduction methods; Andersson, P. G., Munslow, I. J., Eds.; Wiley: New
York, 2008. (c) Rylander, P. N. Catalytic Hydrogenation in Organic
Syntheses; Academic Press: 1979.
(2) (a) Seyden-Penne, J. Reductions by the Alumino and Borohydrides in
Organic Synthesis, 2nd ed.; Wiley: New York, 1997. (b) Gribble, W. G.
Chem. Soc. ReV. 1998, 27, 395.
(3) For recent examples of amide reductions in organic synthesis, see: (a)
Young, I. S.; Kerr, A. M. J. Am. Chem. Soc. 2007, 129, 1465. (b) Nagata,
T.; Nakagawa, M.; Nishida, A. J. Am. Chem. Soc. 2003, 125, 7484. (c)
Cushing, D. T.; Sanz-Cervera, F. J.; Williams, M. R. J. Am. Chem. Soc.
1993, 115, 9323. (d) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu,
K. J. Med. Chem. 1995, 38, 4821. (e) Greshock, J. T.; Grubbs, W. A.;
Williams, M. R. Tetrahedron. 2007, 63, 6124. (f) Smith, T. B.; Wendt,
A. J.; Aube´, J. Org. Lett. 2002, 4, 2577.
(4) (a) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18. (b) Hanada,
S.; Tsutsumi, E.; Motoyama, Y.; Nagashima, H. J. Am. Chem. Soc. 2009,
131, 15032.
reduced (>99% selectivity)! Notably, amide reduction took place
chemoselectiVely eVen in the presence of a ketone group, which is
known to be much more actiVe (Table 2, entry 1).1c To the best of
our knowledge there is no other example of this type of selectivity.
The unparalleled chemoselectivity of the catalyst system is also
verified by exploring 1:1 mixtures of acetophenone, benzonitrile,
methyl benzoate, and nitrobenzene with N,N-dimethylbenzamide
under the optimized reaction conditions. Again, we obtained highly
selective reduction of the amide and no reduction of the other
substrates.
For preliminary mechanistic investigations we stirred a 1:1
mixture of zinc acetate and the model amide 1a for 2 h in THF,
but in contrast to previous studies by Piers and co-workers10b no
change of the CdO stretching frequency was observed in the IR
spectra. Apparently, the role of zinc acetate in this reaction is not
to activate the carbonyl group of the substrate rather than to activate
the silane. Indeed, in monitoring a 1:1 mixture of zinc acetate and
triethoxysilane in THF-d8 by 1H NMR spectroscopy a perturbation
in the integration of the resonances for the silane hydrogen is
observed. Applying 29Si NMR spectroscopy for this mixture showed
the formation of a single new peak at 82.2 ppm (chemical shift of
HSi(OEt)3: 59.24), which indicates an activation of the silane
hydrogen.
(5) Nu´nˇez Magro, A. A.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun.
2007, 3154.
(6) (a) Ohta, T.; Kamiya, M.; Nobutomo, M.; Kusui, K.; Furukawa, I. Bull.
Chem. Soc. Jpn. 2005, 78, 1856. (b) Kuwano, R.; Takahashi, M.; Ito, Y.
Tetrahedron Lett. 1998, 39, 1017. (c) Igarashi, M.; Fuchikami, T.
Tetrahedron Lett. 2001, 42, 1945. (d) Motoyama, H.; Mitsui, K.; Ishida,
T.; Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150. (e) Hanada, S.;
Ishida, T.; Motoyama, Y.; Nagashima, H. J. Org. Chem. 2007, 72, 7551.
(f) Matsubara, K.; Iura, T.; Maki, T.; Nagashima, H. J. Org. Chem. 2002,
67, 4985. (g) Sasakuma, H.; Motoyama, Y.; Nagashima, H. Chem. Commun.
2007, 4916. (h) Hanada, S.; Motoyama, Y.; Nagashima, H. Tetrahedron
Lett. 2006, 47, 6173. (i) Fernandes, A. C.; Roma˜o, C. C. J. Mol. Catal.
2007, 272, 60. (j) Sakai, N.; Fuhji, K.; Konakahara, T. Tetrahedron Lett.
2008, 49, 6873. (k) Selvakumar, K.; Harrod, J. F. Angew. Chem., Int. Ed.
2001, 40, 2129. (l) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M.
Angew. Chem., Int. Ed. 2009, 48, 9507. (m) Sunada, Y.; Kawakami, H.;
Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009,
48, 9511.
(7) Inagaki, T.; Yamada, Y.; Phong, L.; Furuta, A.; Ito, J.; Nishiyama, H. Synlett
2009, 253.
(8) (a) Trost, B. M.; Ball, T. Z. J. Am. Chem. Soc. 2005, 127, 17644. (b) Yong,
L.; Kirleis, K.; Butenscho¨n, H. AdV. Synth. Catal. 2006, 348, 833.
(9) For earlier examples of Zn-catalyzed hydrosilylations, see: (a) Mimoun,
H. J. Org. Chem. 1999, 64, 2582. (b) Bette, V.; Mortreux, A.; Ferioli, F.;
Martelli, G.; Savonia, D.; Carpentier, J. Eur. J. Org. Chem. 2004, 3040.
(c) Bette, V.; Mortreux, A.; Savonia, D.; Carpentier, J. Tetrahedron 2004,
60, 2837. (d) Mimoun, H.; Laumer, J.; Giannini, L.; Scopelliti, R.; Floriani,
C. J. Am. Chem. Soc. 1999, 121, 6158. (e) Bette, V.; Mortreux, A.; Savonia,
D.; Carpentier, J. F. AdV. Synth. Catal. 2005, 347, 289. (f) Park, B.; Mun,
S.; Yun, J. AdV. Synth. Catal. 2006, 348, 1029.
(10) For Lewis acid catalyzed hydrosilylations, see: (a) Parks, J. D.; Piers, E. D.
J. Am. Chem. Soc. 1996, 118, 9440. (b) Parks, J. D.; Blackwell, M. J.;
Piers, E. D. J. Org. Chem. 2000, 65, 3090. (c) Gevorgyan, V.; Liu, J.;
Rubin, M.; Benson, S.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 8919.
(d) Blackwell, M. J.; Foster, K.; Beck, V. H.; Piers, E. D. J. Org. Chem.
1999, 64, 4887. (e) Asao, N.; Ohishi, T.; Sato, K.; Yamamoto, Y.
Tetrahedron 2002, 58, 8195. (f) Asao, N.; Ohishi, T.; Sato, K.; Yamamoto,
Y. J. Org. Chem. 1996, 61, 7654. (g) Nagahara, S.; Yamakawa, T.;
Yamamoto, H. Tetrahedron Lett. 2001, 42, 5057.
Based on these observations, we propose the reaction mechanism
shown in Scheme 1. Zinc acetate reacts with triethoxysilane at room
temperature and forms an activated species A. Next, the amide is
coordinated to the metal center in A and generates the corresponding
N,O-acetal C via B. Release of the anionic zinc ether D led to the
iminium species E. Finally, another equivalent of the silane converts
JA910083Q
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1771