9234 J. Phys. Chem., Vol. 100, No. 22, 1996
Hwang et al.
(2) Nishimura, T.; Das, P. R.; Meisels, G. G. J. Chem. Phys. 1986,
require k1 . k2. The above consideration means that k3 and/or
k4 should increase rapidly with the internal energy for the IDI
mechanism to be applicable from a microsecond to nanosecond
time scale. To check such a possibility, we have calculated
the rate constant k4 on the basis of the PEPICO rate-energy
data of Panczel and Baer. The heat of formation of phenylnitrite
ion has been estimated as ∼900 kJ mol-1 from an AM1
calculation by Osterheld et al.8 Our own semiempirical
calculations resulted in similar values. The best RRKM-QET
calculation for k4 to fit the PEPICO data has been obtained using
E0 of 2.35 eV and ∆Sq of 12 eu. Then, k4 at the internal energy
corresponding to photoexcitation at 607.5 nm has been evaluated
with the RRKM-QET calculation using the same parameters.
Finally, the branching ratio information in Table 2 has been
utilized, which has resulted in k3 + k4 of 2.0 × 108 s-1. This
is much smaller than kT of 8.3 × 108 s-1 observed in the present
work, invalidating the applicability of the IDI mechanism on a
nanosecond time scale.
84, 6190.
(3) Bunn, T. L.; Richard, A. M.; Baer, T. J. Chem. Phys. 1986, 84,
1424.
(4) Mukhtar, E. S.; Griffiths, I. W.; Harris, F. M.; Beynon, J. H. Org.
Mass Spectrom. 1980, 15, 51.
(5) Griffiths, I. W.; Harris, F. M.; Mukhtar, E. S.; Beynon, J. H. Int.
J. Mass Spectrom. Ion Phys. 1981, 38, 127.
(6) Kingston, E. E.; Morgan, T. G.; Harris, F. M.; Beynon, J. H. Int.
J. Mass Spectrom. Ion Phys. 1983, 47, 73.
(7) Cassady, C. J.; McElvany, S. W. Org. Mass Spectrom. 1993, 28,
1650.
(8) Osterheld, T. H.; Baer, T.; Brauman, J. I. J. Am. Chem. Soc. 1993,
115, 6284.
(9) Moini, M.; Eyler, J. R. Int. J. Mass Spectrom. Ion Processes 1987,
76, 47.
(10) Meyerson, S.; Puskas, I.; Fields, E. K. J. Am. Chem. Soc. 1966,
88, 4974.
(11) Brown, P. Org. Mass Spectrom. 1970, 3, 1175.
(12) Brown, P. Org. Mass Spectrom. 1970, 4, 533.
(13) McLafferty, F. W.; Bente, P. F., III; Kornfeld, R.; Tsai, S.-C.; Howe,
I. J. Am. Chem. Soc. 1973, 95, 2120.
(14) Jones, E. G.; Bauman, L. E.; Beynon, J. H.; Cooks, R. G. Org.
Mass Spectrom. 1973, 7, 185.
(15) Beynon, J. H.; Bertrand, M.; Cooks, R. G. J. Am. Chem. Soc. 1973,
95, 1739.
(16) Procter, C. J.; Kralj, B.; Brenton, A. G.; Beynon, J. H. Org. Mass
Spectrom. 1980, 15, 619.
(17) Porter, C. J.; Beynon, J. H.; Ast, T. Org. Mass Spectrom. 1981,
16, 101.
(18) Cameron, D.; Clark, J. E.; Kruger, T. L.; Cooks, R. G. Org. Mass
Spectrom. 1977, 12, 111.
(19) Apel, E. C.; Nogar, N. S. Int. J. Mass Spectrom. Ion Processes
1986, 70, 243.
(20) Marshall, A.; Clark, A.; Jennings, R.; Ledingham, K. W. D.;
Singhal, R. P. Int. J. Mass Spectrom. Ion Processes 1992, 112, 273.
(21) Marshall, A.; Clark, A.; Jennings, R.; Ledingham, K. W. D.;
Singhal, R. P. Int. J. Mass Spectrom. Ion Processes 1992, 116, 143.
(22) Lemire, G. W.; Simeonsson, J. B.; Sausa, R. C. Anal. Chem. 1993,
65, 529.
(23) Galloway, D. B., Bartz, J. A.; Huey, L. G.; Crim, F. F. J. Chem.
Phys. 1993, 98, 2107.
(24) Komidis, C.; Ledingham, K. W. D.; Clark, A.; Marshall, A.;
Jennings, R.; Sander, J.; Singhal, R. P. Int. J. Mass Spectrom. Ion Processes
1994, 135, 229.
(25) (a) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions;
Wiley-Interscience: New York, 1972. (b) Forst, W. Theory of Unimolecular
Reactions; Academic Press: New York, 1973.
(26) Rosenstock, H. M.; Wallenstein, M. B.; Wahrhaftig, A. L.; Eyring,
H. Proc. Natl. Acad. Sci. U.S.A. 1952, 38, 667.
(27) (a) Light, J. C. J. Chem. Phys. 1964, 40, 3221. (b) Pechukas, P.;
Light, J. C. J. Chem. Phys. 1965, 42, 3281. (c) Klots, C. E. J. Phys. Chem.
1971, 75, 1526. (d) Chesnavich, W. J.; Bowers, M. T. J. Am. Chem. Soc.
1976, 98, 8301. (e) Chesnavich, W. J.; Bowers, M. T. J. Chem. Phys. 1977,
66, 2306. (f) Chesnavich, W. J.; Bowers, M. T. J. Chem. Phys. 1981, 74,
2228. (g) Choe, J. C.; Kim, B. J.; Kim, M. S. Bull. Korean Chem. Soc.
1989, 10, 167.
(28) Choe, J. C.; Kim, M. S. J. Phys. Chem. 1991, 95, 50.
(29) Choe, J. C.; Kim, M. S. J. Phys. Chem. 1992, 96, 726.
(30) Yim, Y. H.; Kim, M. S. J. Phys. Chem. 1993, 97, 12122.
(31) Yim, Y. H.; Kim, M. S. Int. J. Mass Spectrom. Ion Processes 1993,
123, 133.
V. Conclusions
Photodissociation of nitrobenzene molecular ions with a
visible photon occurs via several reaction channels. The first
generation dissociation channels producing C6H5O+, C6H5+, and
NO+ have been found to occur competitively. Among the
C6H5O+ ions produced, those with high internal energy dis-
sociate further to C5H5+, which has been observed in real time
in this work. The photodissociation rate constant has been
determined at the molecular ion internal energy of 2.48 eV on
a nanosecond time scale together with KERDs in each channel.
+
It has been found that the production of C6H5 on this time
scale occurs statistically on the ground electronic state potential
energy surface in accordance with RRKM-QET. The rear-
rangement channels producing C6H5O+ and NO+ also occur
statistically. Namely, the results on a nanosecond time scale
are quite typical for cases when direct cleavages and rearrange-
ments compete in the dissociation of a molecular ion. In
particular, no evidence has been found on a nanosecond time
scale to support the ion-dipole intermediate mechanism pro-
posed by Osterheld et al.8 The possibility of this mechanism
on a microsecond time scale cannot be completely ruled out,
however, because some of the nitrobenzene ion dissociation
pathways which can be ignored at high internal energies may
become important at low internal energies. Further investiga-
tion, both experimental and theoretical, seems to be needed in
this regard. Analysis of the rate-energy data for the second step
of the consecutive reaction to C5H5+ indicates that the reaction
occurs statistically also, even though lack of reliable knowledge
on the structure and internal energy content of the intermediate
makes such a conclusion provisional.
(32) Yim, Y. H.; Kim, M. S. J. Phys. Chem. 1994, 98, 5201.
(33) Cho, Y. S.; Kim, M. S.; Choe, J. C. Int. J. Mass Spectrom. Ion
Processes 1995, 145, 187.
(34) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.
(35) Herzberg, G.; Huber, K. P. Molecular spectra and molecular
structure; Van Nostrand Reinhold: New York, 1979; Vol. 4.
(36) Hirshfelder, J. O.; Curtiss C. F.; Bird, R. B. Molecular theory of
gases and liquids; Wiley: New York, 1954.
Acknowledgment. We are grateful to Prof. T. Baer for his
critical reading of the manuscript and valuable discussion. This
work was supported by NON DIRECTED RESEARCH FUND,
Korea Research Foundation, by the Ministry of Education,
Republic of Korea, and by the Center for Molecular Catalysis
and the Korea Science and Engineering Foundation.
(37) Lifshitz, C. AdV. Mass Spectrom. 1989, 11, 713.
(38) Klots, C. E. J. Chem. Phys. 1973, 58, 5364.
References and Notes
(1) Panczel, M.; Baer, T. Int. J. Mass. Spectrom. Ion Processes 1984,
58, 43.
JP9537872