J. A. Lewis and J. F. Wolfe, J. Org. Chem., 1992, 57, 5328; (c)
D. Hellwinkel and R. Karle, Synthesis, 1989, 394.
7 (a) H. Watanabe, R. L. Gay and C. R. Hauser, J. Org. Chem., 1968,
33, 900; (b) H. Watanabe, C.-L Mao, I. T. Barnish and C. R. Hauser,
J. Org. Chem., 1969, 34, 919; (c) H. Watanabe, C. Mao and C. R.
Hauser, J. Org. Chem., 1969, 34, 1786; (d ) J. G. Lombardino, J. Org.
Chem., 1971, 36, 1843; (e) N. S. Narshimhan, Synthesis, 1983, 957;
( f ) V. Snieckus, Chem. Rev., 1990, 90, 879; (g) M. Takahashi,
K. Ohtsuki, T. Taga and Y. Chohnan, Heterocycles, 1998, 48, 1643;
(h) C. Lane and V. Snieckus, Synlett, 2000, 1294.
In summary, we have developed a facile synthesis of 3,3-
disubstituted and spiro-2,3-dihydrobenzo[d]isothiazole-1,1-
diones mediated by the TMSCl–NaI–MeCN reagent. It is
worth noting that spiro five-membered benzosultams such as
7e–g were obtained for the first time. Optically pure benzo-
sultams (ϩ)-7g and (Ϫ)-7g would be useful as chiral auxiliaries
for asymmetric synthesis. Considering the diverse biological
profiles of sulfonamide derivatives, these benzosultams may
also be used for biological evaluations and as possible sub-
strates for developing sulfonamide peptidomimetics.12
8 Typical experimental procedure: A. To a stirred solution of N-tert-
butylbenzenesulfonamide (1.07 g, 5 mmol) in THF (25 mL) was
added a 1.50 M solution of tert-BuLi in hexane (10 mL, 15 mmol)
under nitrogen at Ϫ78 ЊC. The reaction mixture was stirred for 15
min at Ϫ78 ЊC, warmed to 0 ЊC, stirred for an additional 1 h, and
cooled to Ϫ78 ЊC. A solution of anhydrous acetone (0.29 g, 5 mmol)
in THF (5 mL) was added. After 2 h, saturated aqueous NH4Cl was
added. The mixture was extracted with EtOAc, the combined
organic layers were washed with brine, dried (MgSO4) and concen-
trated in vacuo. The residue was chromatographed (30% EtOAc
in hexane) to give the carbinol sulfonamide 6a (1.15 g, 85%) as
colorless prisms: mp 124–126 ЊC; IR (KBr) 3460, 3241 cmϪ1 1H
;
Acknowledgements
NMR δ 1.24 (s, 9H), 1.68 (s, 6H), 4.45 (s, 1H), 6.24 (s, 1H), 7.30–7.36
(m, 2H), 7.45–7.51 (m, 1H), 8.18 (m, 1H); 13C NMR δ 30.7, 33.3,
55.4, 74.9, 127.0, 129.3, 129.8, 132.0, 140.4, 147.2; MS m/z 271 (Mϩ),
256 (Mϩ Ϫ Me). Anal. Calcd for C13H21NO3S: C, 57.54; H, 7.80; N,
5.16. Found: C, 57.59; H, 7.75; N, 5.06%. B. To a stirred solution of
6a (0.55 g, 2 mmol) in MeCN (10 mL) was added under nitrogen,
sodium iodide (0.60 g, 4 mmol) and chlorotrimethylsilane (0.51 mL,
4 mmol). The reaction mixture was refluxed for 1 h. It was cooled
to room temperature and 10% sodium thiosulfate aqueous solution
was added. The mixture was extracted with EtOAc, and the com-
bined organic layers were washed with water, brine, dried (MgSO4)
and concentrated in vacuo. The residue was chromatographed
(30% EtOAc in hexane) to give sultam 7a (0.37 g, 95%) as colorless
prisms.
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Science,
Sports and Culture, Japan.
Notes and references
1 (a) W. Oppolzer, M. Wills, C. Starkemann and G. Bernardinelli,
Tetrahedron Lett., 1990, 31, 4117; (b) W. Oppolzer, M. Wills, M. J.
Kelly, M. Signer and J. Blagg, Tetrahedron Lett., 1990, 31, 5015;
(c) W. Oppolzer, I. Rodriguez, C. Starkemann and E. Walther,
Tetrahedron Lett., 1990, 31, 5019; (d ) W. Oppolzer, A. J. Kingma
and S. K. Pillai, Tetrahedron Lett., 1991, 32, 4893.
2 (a) K. H. Ahn, C. Ham, S.-K. Kim and C.-W. Cho, J. Org. Chem.,
1997, 62, 7047; (b) K. H. Ahn, S.-K. Kim and C. Ham, Tetrahedron
Lett., 1998, 39, 6321; (c) K. H. Ahn, H.-H. Baek, S. J. Lee and
C.-W. Cho, J. Org. Chem., 2000, 65, 7690.
9 (a) E. Differding and R. W. Lang, Helv. Chim. Acta, 1989, 72, 1248;
(b) E. Differding, G. M. Ruegg and R. W. Lang, Tetrahedron Lett.,
1991, 32, 1779.
10 It was determined by analytical HPLC method using Chiralcel AD
column (hexane–i-PrOH–CF3COOH = 80 : 20 : 0.1; flow rate: 0.5 ml
minϪ1). Two peaks of about the same size appeared at 23 and 28
minutes. This is in agreement with the results of racemic 7g analyzed
by the same method.
3 (a) E. Differding and R. W. Lang, Tetrahedron Lett., 1988, 29, 6087;
(b) F. A. Davis and W. Han, Tetrahedron Lett., 1991, 32, 1631; (c)
F. A. Davis, P. Zhou, C. K. Murphy, G. Sundarababu, H. Qi,
W. Han, R. M. Przeslawski, B.-C. Chen and P. J. Carroll, J. Org.
Chem., 1998, 63, 2273; (d ) F. A. Davis and P. V. N. Kasu, Org. Prep.
Proc. Int., 1999, 31, 125; (e) Y. Takeuchi, T. Suzuki, A. Satoh,
T. Shiragami and N. Shibata, J. Org. Chem., 1999, 64, 5708; ( f )
N. Shibata, Z. Liu and Y. Takeuchi, Chem. Pharm. Bull., 2000, 48,
1954; (g) Z. Liu, N. Shibata and Y. Takeuchi, J. Org. Chem., 2000,
65, 7583; (h) Y. Takeuchi, Z. Liu, A. Satoh, T. Shiragami and
N. Shibata, Chem. Pharm. Bull., 1999, 47, 1730; (i) Y. Takeuchi,
Z. Liu, E. Suzuki, N. Shibata and K. L. Kirk, J. Fluorine Chem.,
1999, 97, 65.
11 (Ϫ)-7g: [α]2D7 Ϫ6.4 (c 0.75, CHCl3); IR (KBr) 3235 cmϪ1; H NMR
1
δ 2.53 (dt, J = 13.4, 8.0 Hz, 1H), 3.12 (ddd, J = 16.4, 8.3, 3.6 Hz, 1H),
3.27 (dt, J = 16.1, 7.8 Hz, 1H), 4.65 (s, 1H), 7.04 (d, J = 7.8 Hz, 1H),
7.15 (m, 1H), 7.22 (m, 1H), 7.35 (m, 2H), 7.52–7.61 (m, 2H), 7.81–
7.84 (m, 1H); 13C NMR δ 30.7, 42.5, 73.5, 121.0, 123.8, 124.4, 125.3,
127.9, 129.4, 129.7, 133.6, 136.1, 143.5, 144.4; MS m/z 271 (Mϩ);
HRMS calcd for C15H13NO2S: 271.0667, found 271.0658. Anal.
Calcd for C15H13NO2S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.22;
H, 4.80; N, 5.08%. (ϩ)-7g: [α]2D7 ϩ6.7 (c 1.12, CHCl3).
4 D. C. Baker, A. Mayasundai, J. Mao, S. C. Johnson and S. Yan, PCT
Int. Appl. WO 2000004004A1, 2000; D. C. Baker, A. Mayasundai,
J. Mao, S. C. Johnson and S. Yan, Chem. Abstr., 2000, 132, 122613.
5 (a) R. A. Abramovitch, E. M. Smith, M. Humber, B. Purtschert,
P. C. Srinivasan and G. M. Singer, J. Chem. Soc., Perkin Trans. 1,
1974, 2589; (b) H. Staehle, H. Koeppe, W. Kummer, and K. Zeile,
Ger. Offense 2 105 580, 1972; H. Staehle, H. Koeppe, W. Kummer
and K. Zeile, Chem. Abstr., 1972, 77, 164669r; (c) H. Teeninga and
J. B. F. N. Engberts, J. Org. Chem., 1983, 48, 537.
12 (a) J. van Ameijde and R. M. J. Liskamp, Tetrahedron Lett., 2000,
41, 1103; (b) J. M. Dougherty, D. A. Probst, R. E. Robinson, J. D.
Moore, T. A. Klein, K. A. Snelgrove and P. R. Hanson, Tetrahedron
Lett., 2000, 56, 9781; (c) P. R. Hanson, D. A. Probst and E. E.
Robinson, Tetrahedron Lett., 1999, 40, 4761; (d ) W. R. Roush, S. L.
II. Gwaltney, J. Cheng, K. A. Scheidt, J. H. McKerrow and
E. Hansell, J. Am. Chem. Soc., 1998, 120, 10994; (e) K. G. Carson,
C. F. Schwender, H. N. Shroff, N. A. Cochran, D. L. Gallant
and M. J. Briskin, Bioorg. Med. Chem. Lett., 1997, 7, 711; ( f )
C. Gennari, H. P. Nestler, B. Salom and W. C. Still, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 1765.
6 (a) P. Stanetty, B. Krumpak and T. Emerschitz, Tetrahedron, 1997,
53, 3615; (b) C. K. F. Hermann, J. A. Campbell, T. D. Greenwood,
J. Chem. Soc., Perkin Trans. 1, 2002, 302–303
303