C O M M U N I C A T I O N S
Scheme 2 a
References
(1) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229.
(b) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc.
2000, 122, 10464. (c) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.;
Mart´ın-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358. (d) Huang, T.;
Meng, Y.; Venkatraman, S.; Wang, D.; Li, C.-J. J. Am. Chem. Soc. 2001,
123, 7451. (e) Murakami, M.; Igawa, H. Chem. Commun. 2002, 390.
a
(a) BrCH2CHdCH2, LiOPr-i , THF, 82% (6); (b) ClCOBu-t, LiOPr-i,
THF, 79% (7); (c) EtCHO, THF, 45% (8).
(2) (a) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem.
Soc. 2001, 123, 9918. (b) Lautens, M.; Yoshida, M. Org. Lett. 2002, 4,
123.
Scheme 3
(3) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J.
Am. Chem. Soc. 1998, 120, 5579. (b) Takaya, Y.; Ogasawara, M.; Hayashi,
T. Tetrahedron Lett. 1998, 39, 8479. (c) Takaya, Y.; Senda, T.; Kurushima,
H.; Ogasawara, M.; Hayashi, T. Tetrahedron: Asymmetry 1999, 10, 4047.
(d) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1999, 40,
6957. (e) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem.
Soc. 1999, 121, 11591. (f) Takaya, Y.; Ogasawara, M.; Hayashi, T.
Chirality 2000, 12, 469. (g) Hayashi, T.; Senda, T.; Ogasawara, M. J.
Am. Chem. Soc. 2000, 122, 10716. (h) Hayashi, T. Synlett 2001, 879. (i)
Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852.
(4) (a) Sakuma, S.; Sakai, M.; Itooka, R.; Miyaura, N. J. Org. Chem. 2000,
65, 5951. (b) Sakuma, S.; Miyaura, N. J. Org. Chem. 2001, 66, 8944.
Scheme 4
(5) (a) Kuriyama, M.; Tomioka, K. Tetrahedron Lett. 2001, 42, 921. (b) Reetz,
M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083. (c) Lautens,
M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 1311.
(6) (a) Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am.
Chem. Soc. 2001, 123, 10774. (b) Oi, S.; Honma, Y.; Inoue, Y. Org. Lett.
2002, 4, 667.
(7) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem.
Soc. 2002, 124, 5052.
(8) For recent reviews on catalytic asymmetric 1,4-addition: (a) Krause, N.;
Hoffmann-Ro¨der, A. Synthesis 2001, 171. (b) Sibi, M. P.; Manyem, S.
Tetrahedron 2000, 56, 8033. (c) Tomioka, K.; Nagaoka, Y. In Compre-
hensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto,
H., Eds.; Springer: Berlin, 1999; Vol. 3, Chapter 31.1. (d) Kanai, M.;
Shibasaki, M. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.;
Wiley: New York, 2000; p 569.
titanate with pivaloyl chloride, O-acylation took place selectively
to give a high yield of enol ester 7. Treatment of 3am with propanal
resulted in the formation of (E)-enone 817 by the aldol addition
and elimination.
(9) As recent examples of the copper-catalyzed asymmetric 1,4-addition of
organozinc reagents generating zinc enolates: (a) Mizutani, H.; Degrado,
S. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 779. (b) Alexakis,
A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124,
5262. (c) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am.
Chem. Soc. 2001, 123, 5841.
31P NMR studies showed that addition of the phenyltitanium
reagent PhTi(OPr-i)3 (2m) to the (oxa-π-allyl)((S)-binap)rhodium
complex 97,18 in the presence of triphenylphosphine in THF
generated the phenylrhodium complex coordinated with (S)-binap
and triphenylphosphine 10.7 Protonolysis of the resulting THF
solution with methanol gave a high yield of (S)-3-phenylcyclohex-
anone (4am) (Scheme 3). These results indicate that the catalytic
cycle of the present 1,4-addition consists of two steps (Scheme 4):
One is transmetalation of the aryl group from titanium to the (oxa-
π-allyl)rhodium intermediate, forming an arylrhodium species and
the titanium enolate. The other is insertion of an enone into the
arylrhodium species, forming the (oxa-π-allyl)rhodium complex,
this step having been established during our studies on the rhodium-
catalyzed 1,4-addition of arylboronic acids.7
To summarize, the rhodium-catalyzed asymmetric 1,4-addition
forming chiral titanium enolates with high enantioselectivity was
realized for the first time by the use of ArTi(OPr-i)3. The chiral
titanium enolates can be isolated as silyl enol ethers by way of
titanate-type enolates generated by the addition of lithium isopro-
poxide to the titanium enolates. The catalytic cycle has been
established by a stoichiometric reaction of an (oxa-π-allyl)rhodium
complex.
(10) Weidmann, B.; Widler, L.; Olivero, A. G.; Maycock, C. D.; Seebach, D.
HelV. Chim. Acta 1981, 64, 357.
(11) For reviews on organotitanium reagents: (a) Duthaler, R. O.; Hafner, A.
In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.;
Wiley-VCH: Weinheim, 1998; Vol. 1, p 447. (b) Reetz, M. T. Organ-
otitanium Reagents in Organic Synthesis; Springer: Verlag: 1986. (c)
Sato, F.; Urabe, H.; Okamoto, S. Chem. ReV. 2000, 100, 2835. (d) Ferreri,
C.; Palumbo, G.; Caputo, R. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Schreiber, S. L., Eds.; Pergamon Press: Oxford, 1991;
Vol. 1, p 139.
(12) 1H NMR (THF-d8): δ 1.27 (br d, J ) 5.5 Hz, 18H), 1.37-1.49 (br m,
1H), 1.60-1.72 (br m, 1H), 1.74-1.86 (br m, 1H), 1.86-2.00 (br m,
1H), 2.14-2.43 (br m, 2H), 3.47-3.58 (br m, 1H), 4.38-4.75 (br m,
3H), 4.91-5.11 (br m, 1H), 7.11 (t, J ) 7.2 Hz, 1H), 7.21 (t, J ) 7.2 Hz,
2H), 7.25 (d, J ) 7.2 Hz, 2H).
(13) (a) Generation of titanium enolates by the reaction of lithium enolates
with ClTi(OPr-i)3 has been reported: Reetz, M. T.; Peter, R. Tetrahedron
Lett. 1981, 22, 4691. (b) For a review on titanium enolates: Paterson, I.
In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Heathcock,
C. H., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 301.
(14) This type of titanate enolates has been generated by the reaction of lithium
enolates with Ti(OBu-n)4: Yachi, K.; Shinokubo, H.; Oshima, K. J. Am.
Chem. Soc. 1999, 121, 9465. See also, Han, Z.; Yorimitsu, H.; Shinokubo,
H.; Oshima, K. Tetrahedron Lett. 2000, 41, 4415.
(15) Copper-catalyzed 1,4-addition of organotitanium reagents in the presence
of chlorotrimethylsilane giving silyl enol ethers has been reported: Arai,
M.; Lipshutz, B. H.; Nakamura, E. Tetrahedron 1992, 48, 5709.
(16) Reviews: (a) Colvin, E. Silicon in Organic Synthesis; Butterworths:
London, 1981; p 198. (b) Mukaiyama, T. Org. React. 1982, 28, 203. (c)
Chan, T.-H. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 595.
(d) Gennari, C. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, 1991; Vol.
2, p 629.
Acknowledgment. This work was supported in part by a Grant-
in-Aid for Scientific Research from the Ministry of Education,
Science, Sports, and Culture, Japan. K.Y. thanks the Japan Society
for the Promotion of Science for the award of a fellowship for
graduate students.
(17) Contaminated with ca. 8% of its isomer.
(18) The (oxa-π-allyl)rhodium complex 8 was generated in the NMR sample
tube by addition of 2-cyclohexenone to phenylrhodium 9 (ref 7).
Supporting Information Available: Experimental procedures and
spectroscopic and analytical data for the products (PDF). This material
JA027663W
9
J. AM. CHEM. SOC. VOL. 124, NO. 41, 2002 12103