Organic Letters
Letter
reactive, affording α-alkylation product 6c as a single
regioisomer in 53% yield and a moderate er of 70:30. Second,
benzylation is now again highly regioselective (>20:1) with
either benzyl bromide (6d, 77% yield, 93:7 er) or 3-
(bromomethyl)-2-fluoropyridine (6e, 81% yield, 86:14 er).
For 6d, we performed the reaction on a >1 g scale and
demonstrated the simple extractive recovery of (R)-1TA in
96% yield.16
In summary, we demonstrated that direct enantioselective
alkylation of carboxylic acids with non-aromatic substituents is
feasible and can provide practical levels of enantiocontrol.
Enantio- and regioselective alkylation of 3-alkenoic acids can
be accomplished effectively with chiral lithium amides as
stereodirecting reagents, providing enantioenriched versatile
products primed for further functionalization. The chiral amine
can be readily recovered by a simple aqueous extraction
simplifying the removal and recycling of the stereodirecting
reagent. The preference for alkylation at the α position with
chiral lithium amides was notably stronger than with simple
bases like LDA. This higher selectivity is likely due to yet
undetermined structural characteristics of the mixed lithium
enolate−chiral lithium amide aggregate involved in the
alkylation reaction. Efforts to define the structure of the
mixed aggregate and applications of this method in complex
molecule synthesis will be the subject of our future research.
REFERENCES
■
(1) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetric
Alkylation Reactions of Chiral Imide Enolates. A Practical Approach
to the Enantioselective Synthesis of α-Substituted Carboxylic Acid
Derivatives. J. Am. Chem. Soc. 1982, 104, 1737−1739. (b) Evans, D.
A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. Total Synthesis of
the Polyether Antibiotic Ionomycin. J. Am. Chem. Soc. 1990, 112,
5290−5313. (c) Heravi, M. M.; Zadsirjan, V.; Farajpour, B.
Applications of Oxazolidinones as Chiral Auxiliaries in the
Asymmetric Alkylation Reaction applied to Total Synthesis. RSC
Adv. 2016, 6, 30498−30551. (d) Herrmann, A. T.; Smith, L. L.;
Zakarian, A. A Simple Method for Asymmetric Trifluoromethylation
of N-Acyl Oxazolidinones via Ru-Catalyzed Radical Addition to
Zirconium Enolates. J. Am. Chem. Soc. 2012, 134, 6976−6979.
(2) (a) Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. Use of
Pseudoephedrine as a Practical Chiral Auxiliary for Asymmetric
Synthesis. J. Am. Chem. Soc. 1994, 116, 9361−9362. (b) Myers, A. G.;
Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L.
Pseudoephedrine as a Practical Chiral Auxiliary for the Synthesis of
Highly Enantiomerically Enriched Carboxylic Acids, Alcohols,
Aldehydes, and Ketones. J. Am. Chem. Soc. 1997, 119, 6496−6511.
(c) Morales, M. R.; Mellem, K. T.; Myers, A. G. Pseudoephenamine:
A Practical Chiral Auxiliary for Asymmetric Synthesis. Angew. Chem.,
Int. Ed. 2012, 51, 4568−4571.
(3) Ma, Y.; Mack, K. A.; Liang, J.; Keresztes, I.; Collum, D. B.;
Zakarian, A. Mixed Aggregates of the Dilithiated Koga Tetraamine:
NMR Spectroscopic and Computational Studies. Angew. Chem., Int.
Ed. 2016, 55, 10093−10097.
(4) (a) Simpkins, N. S.; Weller, M. D. Asymmetric Transformations
by Deprotonation Using Chiral Lithium Amides. Org. React. 2012, 79,
317−636. (b) Ikota, N.; Sakai, H.; Shibata, H.; Koga, K. Stereo-
selective Reactions. XI. Asymmetric Alkylation of Cyclohexanone via
Chiral Chelated Lithioenamines Derived from D-Camphor Deriva-
tives. Chem. Pharm. Bull. 1986, 34, 1050−1055. (c) Harrison-
Marchand, A.; Maddaluno, J. Advances in the Chemistry of Chiral
Lithium Amides. In Lithium Compounds in Organic Synthesis; Luisi, R.,
Capriati, V., Eds.; Wiley-VCH: Weinheim, Germany, 2014; p 463.
Recent applications in total synthesis: (d) Jackson, J. J.; Kobayashi,
H.; Steffens, S. D.; Zakarian, A. 10-Step Asymmetric Total Synthesis
and Stereochemical Elucidation of (+)-Dragmacidin D. Angew. Chem.,
Int. Ed. 2015, 54, 9971−9975.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Complete experimental procedures and characterization
1
Copies of H, 13C, and 19F NMR spectra (PDF)
Copies of HPLC traces (PDF)
(5) (a) Murakata, M.; Nakajima, M.; Koga, K. Enantioselective
Alkylation at the α-Position of Cyclic Ketones using a Chiral Lithium
Amide as a Base in the Presence of Lithium Bromide. J. Chem. Soc.,
Chem. Commun. 1990, 0, 1657−1658. (b) Imai, M.; Hagihara, A.;
Kawasaki, H.; Manabe, K.; Koga, K. Catalytic Asymmetric
Benzylation of Achiral Lithium Enolates Using a Chiral Ligand for
Lithium in the Presence of an Achiral Ligand. J. Am. Chem. Soc. 1994,
116, 8829−8830. (c) Frizzle, M. J.; Caille, S.; Marshall, T. L.; McRae,
K.; Nadeau, K.; Guo, G.; Wu, S.; Martinelli, M. J.; Moniz, G. A.
Dynamic Biphasic Counterion Exchange in ta Configurationally
Stable Aziridinium Ion: Efficient Synthesis and Isolation of a Koga C2-
Symmetric Tetraamine Base. Org. Process Res. Dev. 2007, 11, 215−
222. (d) Frizzle, M. J.; Nani, R. R.; Martinelli, M. J.; Moniz, G. A.
Asymmetric Alkylation of 5-Alkyl-2-aminothiazolones Using a C2-
symmetric Chiral Tetraamine Base. Tetrahedron Lett. 2011, 52, 5613.
(6) (a) Stivala, C.; Zakarian, A. Highly Enantioselective Direct
Alkylation of Arylacetic Acids with Chiral Lithium Amides as
Traceless Auxiliaries. J. Am. Chem. Soc. 2011, 133, 11936−11939.
(b) Ma, Y.; Stivala, C. E.; Wright, A. M.; Hayton, T.; Liang, J.;
Keresztes, I.; Lobkovsky, E.; Collum, D. B.; Zakarian, A. Enediolate-
Dilithium Amide Mixed Aggregates in the Enantioselective Alkylation
of Arylacetic Acids: Structural Studies and a Stereochemical Model. J.
Am. Chem. Soc. 2013, 135, 16853−16854. (c) Lu, P.; Jackson, J. J.;
Eickhoff, J.; Zakarian, A. Direct Enantioselective Conjugate Addition
of Carboxylic Acids with Chiral Lithium Amides as Traceless
Auxiliaries. J. Am. Chem. Soc. 2015, 137, 656−659. (d) Yu, K.; Lu,
P.; Jackson, J. J.; Nguyen, T.-A. D.; Alvarado, J.; Stivala, C.; Ma, Y.;
Mack, K.; Hayton, T. W.; Collum, D. B.; Zakarian, A. Lithium
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Present Address
†B.M.: Department of Internal Medicine-Hematology/Oncol-
ogy, Medical School, University of Michigan, 930 N.
University Ave., Ann Arbor, MI 48109.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is supported by the National Institutes of Health
(National Institute of General Medical Sciences Grant
GM077379). A.Z. thanks Amgen for generous supplies of
tetraamine reagent (R)-1TA. Dr. Hongjun Zhou [University of
California, Santa Barbara, CA (UCSB)] is acknowledged for
expert assistance with NMR spectroscopy. Dr. Dmitriy
Uchenik and the UCSB mass spectroscopy facility are thanked
for assistance with mass spectral analysis. K.Y. is supported by
the Mellichamp Sustainability Fellowship.
D
Org. Lett. XXXX, XXX, XXX−XXX