J.L. Muñoz-Muñoz et al. / Biochimica et Biophysica Acta 1824 (2012) 647–655
655
[19] F. Garcia-Molina, A.N. Hiner, L.G. Fenoll, J.N. Rodriguez-Lopez, P.A. Garcia-Ruiz, F.
Garcia-Canovas, J. Tudela, Mushroom tyrosinase: catalase activity, inhibition and
suicide inactivation, J. Agric. Food Chem. 53 (2005) 3702–3709.
[20] J.L. Munoz-Munoz, F. Garcia-Molina, P.A. Garcia-Ruiz, R. Varon, J. Tudela, J.N.
Rodriguez-Lopez, F. Garcia-Canovas, Catalytic oxidation of aminophenols and ar-
omatic amines by mushroom tyrosinase, Biochim. Biophys. Acta 1814 (2011)
1974–1983.
[21] J.N. Rodriguez-Lopez, L.G. Fenoll, P.A. Garcia-Ruiz, R. Varon, J. Tudela, R.N.
Thorneley, F. Garcia-Canovas, Stopped-flow and steady-state study of the
diphenolase activity of mushroom tyrosinase, Biochemistry 39 (2000)
10497–10506.
[22] L. Fenoll, M.J. Peñalver, J.N. Rodriguez-Lopez, P.A. Garcia-Ruiz, F. Garcia-Canovas,
J. Tudela, Deuterium isotope effect on the oxidation of monophenols and o-diphe-
nols by tyrosinase, Biochem. J. 380 (2004) 643–650.
[23] M.J. Penalver, J.N. Rodriguez-Lopez, P.A. Garcia-Ruiz, F. Garcia-Canovas, J. Tudela,
Solvent deuterium isotope effect on the oxidation of o-diphenols by tyrosinase,
Biochim. Biophys. Acta 1650 (2003) 128–135.
[24] O. Toussaint, K. Lerch, Catalytic oxidation of 2-aminophenols and ortho hydroxyl-
ation of aromatic amines by tyrosinase, Biochemistry 26 (1987) 8567–8571.
[25] B. Gasowska, P. Kafarski, H. Wojtasek, Interaction of mushroom tyrosinase with
aromatic amines, o-diamines and o-aminophenols, Biochim. Biophys. Acta 1673
(2004) 170–177.
[26] F. Maddaluno, K.F. Faull, Inhibition of mushroom tyrosinase by 3-amino-L-tyro-
sine: molecular probing of the active site of the enzyme, Experientia 44 (1988)
885–887.
[27] A. Rescigno, E. Sanjust, A.C. Rinaldi, F. Sollai, N. Curreli, A. Rinaldi, Effect of
3-hydroxyanthranilic acid on mushroom tyrosinase activity, Biochim. Biophys.
Acta 1384 (1998) 268–276.
[28] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the
folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
[29] J.N. Rodriguez-Lopez, M. Banon-Arnao, F. Martinez-Ortiz, J. Tudela, M. Acosta, R.
Varon, F. Garcia-Canovas, Catalytic-oxidation of 2,4,5-trihydroxyphenylalanine
by tyrosinase-identification and evolution of intermediates, Biochem. Biophys.
Acta 1160 (1992) 221–228.
[30] F. Garcia-Molina, J.L. Muñoz, R. Varon, J.N. Rodriguez-Lopez, F. Garcia-Canovas, J.
Tudela, A review on spectrophotometric methods for measuring the monopheno-
lase and diphenolase activities of tyrosinase, J. Agric. Food Chem. 55 (2007)
9739–9749.
[31] J.L. Munoz, F. Garcia-Molina, R. Varon, J.N. Rodriguez-Lopez, F. Garcia-Canovas, J.
Tudela, Calculating molar absorptivities for quinones: application to the measure-
ment of tyrosinase activity, Anal. Biochem. 351 (2006) 128–138.
[32] J.N. Rodriguez-Lopez, J.R. Ros-Martinez, R. Varon, F. Garcia-Canovas, Calibration of
a Clark-type oxygen electrode by tyrosinase-catalyzed oxidation of a 4-tert-butyl-
catechol, Anal. Biochem. 202 (1992) 356–360.
(Murcia, Spain). J.B. thanks the MICINN for a Ramon y Cajal Fellowship,
co-financed by the European Social Fund.
References
[1] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Multicopper oxidases and oxyge-
nases, Chem. Rev. 96 (1996) 2563–2606.
[2] M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Copper-O2 reactivity of tyrosinase
models towards external monophenolic substrates: molecular mechanism and
comparison with the enzyme, Chem. Soc. Rev. 40 (2011) 4077–4098.
[3] L. Casella, E. Monzani, M. Gulloti, D. Cavagino, G. Cerina, L. Santagostini, R. Ugo,
Functional modelling of tyrosinase. Mechanism of phenol ortho hydroxylation
by dinuclear copper complexes, Inorg. Chem. 35 (1996) 7516–7625.
[4] J. Escribano, J. Tudela, F. Garcia-Carmona, F. Garcia-Canovas, A kinetic study of the
suicide inactivation of an enzyme measured through coupling reactions, Bio-
chem. J. 262 (1989) 597–603.
[5] J.L. Munoz-Munoz, F. Garcia-Molina, R. Varon, P.A. Garcia-Ruiz, J. Tudela, F.
Garcia-Canovas, J.N. Rodriguez-Lopez, Suicide inactivation of the diphenolase
and monophenolase activities of tyrosinase, IUBMB Life 62 (2010) 539–547.
[6] J.L. Muñoz-Muñoz, F. Garcia-Molina, P.A. Garcia-Ruiz, M. Molina-Alarcon, J.
Tudela, F. Garcia-Canovas, J.N. Rodriguez-Lopez, Phenolic substrates and suicide
inactivation of tyrosinase: kinetics and mechanism, Biochem. J. 416 (2008)
413–440.
[7] J.L. Muñoz-Muñoz, J.R. Acosta-Motos, F. Garcia-Molina, R. Varon, P.A. Garcia-Ruíz,
J. Tudela, F. Garcia-Cánovas, J.N. Rodríguez-López, Tyrosinase inactivation in its
action on L-dopa, Biochim. Biophys. Acta 1804 (2010) 1467–1475.
[8] T.S. Chang, Two potent suicide substrates of mushroom tyrosinase, J. Agric. Food
Chem. 55 (2007) 2010–2015.
[9] T.S. Chang, M.Y. Lin, H.J. Lin, Indentifying 8-hydroxynaringenin as a suicide
substrate of mushroom tyrosinase, J. Cosmet. Sci. 61 (2010) 205–210.
[10] S.S.-K. Tai, C.-G. Lin, M.-H. Wu, T.S. Chang, Evaluation of depigmenting activity by
8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers, Int. J.
Mol. Sci. 10 (2009) 4257–4266.
[11] E.J. Land, C.A. Ramsden, P.A. Riley, The mechanism of suicide-inactivation of ty-
rosinase: a substrate structure investigation, Tohoku J. Exp. Med. 212 (2007)
341–348.
[12] Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, M. Sugiyama, Crystallographic
evidence that the dinuclear copper center of tyrosinase is flexible during cataly-
sis, J. Biol. Chem. 281 (2006) 8981–8990.
[13] M. Sendovski, M. Kanteev, V. Shuster Ben-Yosef, N. Adir, A. Fishman, Crystalliza-
tion and preliminary X-ray crystallographic analysis of a bacterial tyrosinase
from Bacillus megaterium, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
66 (2010) 1101–1103.
[33] Jandel Scientific, Sigma Plot 9.0 for Windows™, Jandel Scientific, Core Madera,
2006.
[14] M. Sendovski, M. Kanteev, V. Shuster Ben-Yosef, N. Adir, A. Fishman, First struc-
tures of an active bacterial tyrosinase reveal copper plasticity, J. Mol. Biol. 405
(2011) 227–237.
[34] J.L. Muñoz-Muñoz, J. Berna, F. Garcia-Molina, P.A. Garcia-Ruiz, J. Tudela, J.N.
Rodriguez-Lopez, F. Garcia-Canovas, Unravelling the suicide inactivation of ty-
rosinase:
a discrimination between mechanisms. J. Mol. Catal. B Enzym.
[15] W.T. Ismaya, H.J. Rozeboom, A. Weijn, J.J. Mes, F. Fusetti, H.J. Wichers, W.B.
Dijkstra, Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of
the tetramer subunits and interaction with tropolone, Biochemistry 50 (2011)
5477–5486.
(2011), Doi: 10.1016/j.molcatb.2011.11.001.
[35] S. Menon, R.W. Fleck, G. Yong, K.G. Strothkamp, Benzoic acid inhibition of the α,
β, and γ isoenzymes of Agaricus bisporus tyrosinase, Arch. Biochem. Biophys. 280
(1990) 27–32.
[16] F. García-Molina, J.L. Muñoz-Muñoz, M. Garcia-Molina, P.A. Garcia-Ruiz, J. Tudela,
F. Garcia-Canovas, J.N. Rodriguez-Lopez, Melanogenesis inhibition due to NADH,
Biosci. Biotechnol. Biochem. 74 (2010) 1777–1787.
[17] F. García-Molina, J.L. Muñoz-Muñoz, J.R. Acosta, P.A. Garcia-Ruiz, J. Tudela, F.
Garcia-Canovas, J.N. Rodriguez-Lopez, Melanogenesis inhibition by tetrahydrop-
terines, Biochim. Biophys. Acta 1794 (2009) 1766–1774.
[36] J.S. Conrad, S.R. Dawso, E.R. Hubbard, T.E. Meyers, K.G. Strothkamp, Inhibitor
binding to the binuclear active site of tyrosinase: temperature, pH and solvent
deuterium isotope effects, Biochemistry 33 (1994) 5739–5744.
[37] H. Decker, R. Dillinger, F. Tuczek, How does tyrosinase work? Recent insights
from model chemistry and structural biology, Angew. Chem. Int. Ed. 39 (2000)
1591–1595.
[18] F. García-Molina, J.L. Muñoz-Muñoz, F. Martinez-Ortiz, P.A. Garcia-Ruiz, J.
Tudela, F. Garcia-Canovas, J.N. Rodriguez-Lopez, Tetrahydrofolic acid is a potent
suicide substrate of mushroom tyrosinase, J. Agric. Food Chem. 59 (2011)
1383–1391.
[38] A. Rescigno, F. Bruyneel, A. Padiglia, F. sollai, A. Salis, J. Marchand-Brynaert, E. Sanjust,
Structure-activity relationships of various amino-hydroxy-benzenesulphonic acids
and sulphonamides as tyrosinase substrates, Biochim. Biophys. Acta 1810 (2011)
799–807.