Table 1 Disaccharide library prepared using peptide templated methodology
a Ratio a : b determined by NMR and HPLC. b Overall yield for synthesis, including peptide assembly. c The configuration of the major isomer was
determined from the 1JC1–H1 value.
2 D. R. Greenwell, A. F. Ibnouzaki and S. L. Warriner, Angew. Chem., Int.
Ed., 2002, 41, 1215.
cumulative yield for the peptide assembly and the subsequent
glycosidation, cleavage and HPLC steps, demonstrating the highly
efficient nature of the reaction sequence. Typically, syntheses
performed on 50 mg of resin yielded 10 mg of the major
disaccharide. It is notable that, apart from being mixtures of
anomers, the products are very pure directly following the
synthesis. Anomeric selectivities follow the trends observed in
preliminary studies with the a anomer dominating with ratios of
typically 3 : 1. It is interesting to note that significantly more b
mannoside is produced using this methodology than observed using
classical approaches. The template or resin must be increasing the
propensity for b glycoside formation. Our preliminary results
showed higher a selectivity in the synthesis of the Glc(1,4)Glc
disaccharide on a slightly different template.2 Experiments to
understand the origins of these selectivities are in progress.
In summary, we have successfully exploited the efficiency of
peptide templated glycoside synthesis to prepare a 12 member
library of disaccharides. Our method differs from existing ap-
proaches to parallel saccharide synthesis in that it uses a peptide
coupling, rather than a glycosidation, as the diversity introducing
step.9,10 As a result simple procedures can be followed and, even
without complex automation, the simplicity of the protocols
enabled the library to be prepared in only 4 days.
3 For an alternative approach to peptide templated saccharide synthesis
see: R. J. Tennant-Eyles, B. G. Davis and A. J. Fairbanks, Chem.
Commun., 1999, 1037; R. J. Tennant-Eyles, B. G. Davis and A. J.
Fairbanks, Tetrahedron: Asymmetry, 2000, 11, 231; R. J. Tennant-
Eyles, B. G. Davis and A. J. Fairbanks, Tetrahedron: Asymmetry, 2000,
11, 231; R. J. Tennant-Eyles, B. G. Davis and A. J. Fairbanks,
Tetrahedron: Asymmetry, 2003, 14, 1201.
4 Non-peptide tethers have been used by several groups to control the
regio- and stereoselectivity of glycosidation reactions. For example: F.
Barresi and O. Hindsgaul, J. Am. Chem. Soc., 1991, 113, 9376; M. Bols,
J. Chem. Soc., Chem. Commun., 1992, 913; S. Valverde, A. M. Gomez,
A. Hernandez, B. Herradon and J. C. Lopez, J. Chem. Soc., Chem.
Commun., 1995, 2005; T. Ziegler, G. Lemanski and J. Hurttlen,
Tetrahedron Lett., 2001, 42, 569; M. Müller U. Huchel, A. Geyer and R.
R. Schmidt, J. Org. Chem., 1999, 64, 6190.
5 A. K. Ray and N. Roy, Carbohydr. Res., 1990, 196, 95.
6 H. Franzyk, M. Meldal, H. Paulson and K. Bock, J. Chem. Soc., Perkin
Trans. 1, 1995, 2883.
7 S. V. Ley, D. K. Baeschlin, D. J. Dixon, A. C. Foster, S. J. Ince, H. W.
M. Priepke and D. J. Reynolds, Chem. Rev., 2001, 101, 53; J. L.
Montchamp, F. Tian, M. E. Hart and J. W. Frost, J. Org. Chem., 1996,
61, 3897; U. Berens, D. Leckel and S. C. Oepen, J. Org. Chem., 1995,
60, 8204.
8 Fmoc Solid Phase Peptide Synthesis, A Practical Approach, ed. W. C.
Chan and P. White, Oxford Univeristy Press, Oxford, New York,
2000.
We thank GlaxoSmithKline and the University of Leeds for
helping to fund this work.
9 R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi, K. Sekanina, N.
Horan, J. Gildersleeve, C. Thompson, A. Smith, K. Biswas, W. C. Still
and D. Khane, Science, 1996, 274, 3053; T. Zhu and G-J, Boons, Angew.
Chem., Int. Ed., 1998, 37, 1898.
Notes and references
1 H. M. I. Osborn and T. H. Khan, Tetrahedron, 1999, 55, 1807; P. H.
Seeberger, Chem. Commun., 2003, 1115.
10 Solid Support Oligosaccharide Synthesis and Combinatorial Carbohy-
drate Libraries, ed. P. H. Seeberger, Wiley, New York, 2001.
C h e m . C o m m u n . , 2 0 0 4 , 4 5 4 – 4 5 5
455