X. Xue et al. / Polymer 51 (2010) 3083e3090
3089
Furthermore, the trans-cis-trans isomerization of PS-b-PVAc was
also observed in chloroform solution. The ke and kH of PS-b-PVAc
was 0.0027 and 2.2 ꢅ 10ꢁ4 sꢁ1, respectively.
1.2
1.0
0.8
0.6
0.4
0.2
0.0
PS2-b-PVAc
Acknowledgments
The financial supports of this work by the National Natural
Science Foundation of China (Nos. 20874069, 50803044, 20904036
and 20974071), the Specialized Research Fund for the Doctoral
Program of Higher Education contract grant (No. 200802850005),
the Program of Innovative Research Team of Soochow University
and the Qing Lan Project are gratefully acknowledged.
0
1000
2000
3000
Time (s)
4000
5000
6000
References
Fig. 7. First-order for thermal cis-trans isomerization of block polymer PS2-b-PVAc.
The concentration of the solution is 5.0 ꢅ 10ꢁ4 M in chloroform solution under
different time interval at 60 ꢂC in the dark room.
[1] (a) Wang JS, Matyjaszewski K. Macromolecules 1995;28:7901e10;
(b) Kato M, Kamigaito M, Sawamoto M, Higashimura T. Macromolecules
1995;28:1721e3;
(c) Matyjaszewski K, Xia J. Chem Rev 2001;101:2921e90;
(d) Kamigaito M, Ando T, Sawamoto T. Chem Rev 2001;101:3689e745.
[2] (a) Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le PT. Macromolecules
1998;31:5559e60;
irradiation time in chloroform solution. The first-order rate
constants kexp of photoisomerization was determined by Equation
(3) [32]:
(b) Chong YK, Le PT, Moad G, Rizzardo E, Thang SH. Macromolecules
1999;32:2071e4;
ꢀ
ꢂ
AN ꢁ A0
AN ꢁ At
(c) Lowe AB, McCormick CL. Prog Polym Sci 2007;32:283e351;
(d) Moad G, Rizzardo E, Thang SH. Aust J Chem 2006;59:669e92;
(e) Moad G, Rizzardo E, Thang SH. Polymer 2008;49:1079e131.
[3] (a) Sciannamea V, Jerome R, Detrembleur C. Chem Rev 2008;108:1104e26;
(b) Solomon DH, Rizzardo E, Cacioli P. U.S. Patent 4581429; 1985. Ć(c) Moad G,
Rizzardo E, Solomon DH. Macromolecules 1982;15:909e14;
(d) Hawker CJ, Bosman AW, Harth E. Chem Rev 2001;101:3661e88.
[4] Orienti I, Di PA, Luppi B, Zecchi V, Arch P. Arch Pharm Pharm Med Chem
2000;333:421e4.
In
¼ ꢁkexpt
(3)
where AN, A0 and At are absorbance at 323.5 nm after 365 nm light
irradiation at infinite time, time zero and time t, respectively. The
isomerization rate constants kexp of PS2-b-PVAc was 0.0027 sꢁ1
.
According to this method, the kexp of PS2 was 0.0047 sꢁ1, which was
about nearly 2 times faster than that of PS2-b-PVAc, which was
consistent with the result obtained in the literature [34]. The reason
was considered due to sterically hindering effect of the polymer
chain configuration.
[5] (a) Simms RW, Davis TP, Cunningham MF. Macromol Rapid Commun
2005;26:592e6;
(b) Stenzel MH, Davis TP, Barner-Kowollik C. Chem Commun 2004;13:
1546e7;
(c) Coote ML, Radom L. Macromolecules 2004;37:590e6;
(d) Stenzel MH, Cummins L, Roberts GE, Davis TP, Vana P, Barner-Kowollik C.
Macromol Chem Phys 2003;204:1160e8.
Secondly, thermal cis-trans isomerization of the irradiated
sample PS2-b-PVAc was investigated at 60 ꢂC in dark room. The
absorption at 323.5 nm was slowly restored to the initial state of
PS2-b-PVAc at about 2 h, which means the equilibrium between cis
and trans is established. The kinetics of the cis-trans thermal
isomerizations of PS2-b-PVAc in dark were fitted satisfactorily to
Equation (4):
[6] Destarac M, Charmot D, Franck X, Zard SZ. Macromol Rapid Commun
2000;21:1035e9.
[7] Mardare D, Matyjaszewski K. Macromolecules 1994;27:645e9.
[8] (a) Iovu MC, Matyjaszewski K. Macromolecules 2003;36:9346e54;
(b) Koumura K, Satoh K, Kamigaito M, Okamoto Y. Macromolecules
2006;39:4054e61.
[9] (a) Bryaskova R, Detrembleur C, Debuigne A, Jérôme R. Macromolecules
2006;39:8263e8;
(b) Debuigne A, Caille JR, Jérôme R. Macromolecules 2005;38:5452e8;
(c) Debuigne A, Caille JR, Jérôme R. Angew Chem Int Ed 2005;44:1101e4.
[10] (a) Wakioka M, Baek KY, Ando T, Kamigaito M, Sawamoto M. Macromolecules
2002;35:330e3;
(b) Xia JH, Paik HJ, Matyjaszewski K. Macromolecules 1999;32:8310e4.
[11] (a) Yoshida E. Colloid Polym Sci 2010;288:73e8;
(b) Otsu T, Matsunaga T, Doi T, Matsumoto A. Eur Polym J 1995;31:67e78;
(c) Ueda N, Kamigaito M, Sawamoto M. Polym Prepr Jpn 1997;46:149e52.
[12] (a) Benaglia M, Chiefari J, Chong YK, Moad G, Rizzardo E, Thang SH. J Am Chem
Soc 2009;131:6914e5;
ꢀ
ꢂ
AN ꢁ A0
AN ꢁ At
Ln
¼ kHt
(4)
where AN, A0 and At are absorbance at 323.5 nm at time infinite,
time zero and time t, respectively. The first-order cis-trans thermal
isomerization was shown in Fig. 7. The cis-trans rate constant (kH) of
PS2-b-PVAc was 2.2 ꢅ 10ꢁ4
s
ꢁ1. These results confirmed that the
isomerization of azobenzene in the polymer is reversible by the
photo- and thermo procedures, which had a potential application
in photochromic probes.
(b) Benaglia M, Chen M, Chong YK, Moad G, Rizzardo E, Thang SH. Macro-
molecules 2009;42:9384e6.
[13] Tong YY, Dong YQ, Du FS, Li ZC. Macromolecules 2008;41:7339e46.
[14] Debuigne A, Caille JR, Willet N, Jérôme R. Macromolecules 2005;38:9488e96.
[15] Kolb HC, Finn MG, Sharpless KB. Angew Chem Int. Ed 2001;40:2004e21.
[16] (a) Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. J Am Chem
Soc 2003;125:3192e3;
4. Conclusions
Well-defined block copolymers, poly(styrene)-b-poly(vinyl
acetate), PS-b-PVAc containing middle azobenzene moiety were
successfully synthesized by a combination of the reversible addi-
tion-fragmentation chain transfer (RAFT) and “click” chemistry.
This novel method provided an efficient way to prepare terminal
(b) Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, et al. Angew
Chem Int Ed 2004;43:3928e32;
(c) Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP, Wu P,
et al. Macromolecules 2005;38:3663e78.
[17] Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH. Chem Commun
2006;48:5051e3.
[18] (a) Brown D, Natansohn A, Rochon P. Macromolecules 1995;28:6116e23;
(b) Kumar G, Neckers DC. Chem Rev 1989;89:1915e37;
(c) Delaire JA, Nakatani K. Chem Rev 2000;100:1817e45;
(d) Natansohn A, Rochon P. Chem Rev 2002;102:4139e75.
[19] (a) Gibons WM, Shannon PJ, Sun ST, Swetlin BJ. Nature 1991;351:49e50;
(b) Hafiz HR, Nakanishi F. Nanotechnology 2003;14:649e54;
(c) Rasmussen pH, Ramanujam PS, Hvilsted S, Berg RH. J Am Chem Soc
1999;121:4738e43;
functionalized block copolymer: firstly,
chromophore terminated poly(styrene) (PS), and
a
-alkyne and azobenzene
-azido-termi-
u
nated poly(vinyl acetate) (PVAc) were designed via RAFT tech-
nology. Secondly, “click” reactions were performed with the
combination of CuBr and PMDETA as catalyst system. PS-b-PVAc
block copolymers were demonstrated by GPC, 1H NMR, FT-IR
spectra and differential scanning calorimetry (DSC) analysis.
(d) Rochon P, Batalla E, Natansohn A. Appl Phys Lett 1995;66:136e8.