synthetic chemistry,5 biohydroxylation can be a useful tool
for this type of transformation.6-7 However, no successful
biohydroxylation of azetidine or N-substituted azetidines has
been reported thus far. Hydroxylations of N-substituted
piperidines with BeauVeria sulfurescens ATCC 71597i,8 or
Aspergillus niger VKM F-11199 are known, but the low
activity, yield, and product concentration (less than 0.1 g/L)
limit their synthetic applications.
Scheme 1
We have recently found that the bacterial strain Sphin-
gomonas sp. HXN-200 is an excellent biocatalyst for regio-
and stereoselective hydroxylations of pyrrolidines7a,c and
pyrrolidin-2-ones.7b Here, we report the hydroxylation with
this strain of N-substituted azetidines and piperidines, four-
and six-membered heterocycles, for the preparation of the
corresponding 3-hydroxyazetidines and 4-hydroxypiperidines
and the successful use of rehydrated lyophilized cell powder
as hydroxylation catalyst.
Sphingomonas sp. HXN-200 was grown on n-octane vapor
in 30 L of E2 medium10 at 30 °C and 1500 rpm for 90 h to
a cell density of 8.5 g/L. The cells were harvested, and the
cell pellets (2.5 kg wet cells consisting of 10% dry cells)
were stored at -80 °C. The frozen/thawed cells were used
(5) For reviews, see: (a) Reiser, O. Angew. Chem., Int. Ed. Engl. 1994,
33, 69. (b) Barton, D. H. R.; Doller, D. Acc. Chem. Res. 1992, 25, 504. (c)
Ostovic, D.; Bruice, T. C. Acc. Chem. Res. 1992, 25, 314. (d) Davis, J. A.;
Watson, P. L.; Liebmann, J. F.; Greenberg, A. SelectiVe Hydrocarbon
ActiVation; VCH: New York, 1990. (e) Hill, C. L. ActiVation and
Functionalization of Alkanes; Wiley and Sons: New York, 1989. (f) Shilov,
A. V. ActiVation of Saturated Hydrocarbons by Transition Metal Complexes;
Reisel: Boston, 1984.
(6) For reviews, see: (a) Johnson, R. A. In Oxidation in Organic
Chemistry; Trahanovsky, W. S., Ed.; Academic Press: New York, 1978;
Part C, p 131. (b) Kieslich, K. Microbial Transformation of Non-Steroid
Cyclic Compounds; Thieme: Stuttgart, 1976; p 365. (c) Furstoss R.;
Archelas A.; Fourneron, J. D.; Vigne, B. In Organic Synthesis: An
Interdisciplinary Challenge; Streith J., Prinzbach, H., Schill, G., Eds.;
Blackwell Scientific Publications: Cambridge, 1985; p 215. (d) Holland,
H. L. Organic Synthesis with OxidatiVe Enzymes; VCH: New York, 1992;
Chapter 3, p 55. (e) Holland, H. L.; Weber, H. Curr. Opin. Biotechnol.
2000, 11, 547. (f) Duetz, W. A.; van Beilen, J. B.; Witholt, B. Curr. Opin.
Biotechnol. 2001, 12, 419. (g) Lehman, L. R.; Stewart, J. D. Curr. Org.
Chem. 2001, 5, 439. (h) Li, Z.; van Beilen, J. B.; Duetz, W. A.; Schmid,
A.; de Raadt, A.; Griengl, H.; Witholt, B. Curr. Opin. Chem. Biol. 2002, 6,
136.
(7) For recent publications, see: (a) Li, Z.; Feiten, H.-J.; Chang, D.;
Duetz, W. A.; van Beilen, J. B.; Witholt, B. J. Org. Chem. 2001, 66, 8424.
(b) Chang, D.; Witholt, B.; Li, Z. Org. Lett. 2000, 2, 3949. (c) Li, Z.; Feiten,
H.-J.; van Beilen, J. B.; Duetz, W.; Witholt, B. Tetrahedron: Asymmetry
1999, 10, 1323. (d) de Raadt, A.; Griengl, H.; Weber, H. J. Chem. Eur. J.
2001, 7, 27. (e) de Raadt, A.; Fetz, B.; Griengl, H.; Klingler, M. F.; Krenn,
B.; Mereiter, K.; Mu¨nzer, D. F.; Plachota, P.; Weber, H. J., Saf, R.
Tetrahedron 2001, 57, 8151. (f) de Raadt, A.; Fetz, B.; Griengl, H.; Klingler,
M. F.; Kopper, I.; Krenn, B.; Mu¨nzer, D. F.; Ott, R. G.; Plachota, P.; Weber,
H. J.; Braunegg, G.; Mosler, W.; Saf, R. Eur. J. Org. Chem. 2000, 3835.
(g) Aranda, G.; Moreno, L.; Cortes, M.; Prange, T.; Maurs, M.; Azerad, R.
Tetrahedron 2001, 57, 6051. (h) Hemenway, M. S.; Olivo, H. F. J. Org.
Chem. 1999, 64, 6312. (i) Holland, H. L.; Morris, T. A.; Nava, P. J.; Zabic,
M. Tetrahedron 1999, 55, 7441. (j) Flitsch, S. L.; Aitken, S. J.; Chow, C.
S.-Y.; Grogan, G.; Staines, A. Bioorg. Chem. 1999, 27, 81. (k) Shibasaki,
T.; Sakurai, W.; Hasegawa, A.; Uosaki, Y.; Mori, H.; Yoshida M.; Ozaki,
A. Tetrahedron Lett. 1999, 40, 5227.
Syntheses of 4-hydroxypiperidine and N-substituted 4-hy-
droxypiperidines are also not straightforward: preparations
involving reduction of N-substituted 4-piperidones,4a-e hy-
drogenation of 4-hydroxypyridine or N-substituted 1H-
pyridin-4-one,4f-h or hydrogenation and cyclization of 3-hy-
droxy-glutaronitrile4i give low overall yields in multisteps;
syntheses via Mannich-type cyclization of formaldehyde with
benzylbut-3-enyl-amine4j or with N-benzylammonium trif-
luoroacetate and allyl-trimethyl-silane4k are not practical;
hydroboration of N-trimethylsilanyl- or N-benzyloxylcarbonyl-
1,2,5,6-tetrahydropyridine4l-n gives a mixture of 3- and
4-hydroxy piperidines.
Regioselective hydroxylation of azetidine and piperidine
represents one of the simplest ways for preparing the
hydroxylated derivatives. While selective hydroxylation on
a nonactivated carbon atom remains still a challenge in
(3) (a) Gaertner, V. R. J. Org. Chem. 1967, 32, 2972. (b) Laguerre, M.;
Boyer, C.; Leger, J.-M.; Carpy, A. Can. J. Chem. 1989, 67, 1514. (c)
Jimenez, A.; Vega, S. J. Heterocycl. Chem. 1986, 23, 1503. (d) Jung, M.
E.; Choi, Y. M. J. Org. Chem. 1991, 56, 6729. (e) Constantieux, Th.; Grelier,
St.; Picard, J.-P. Synlett 1998, 5, 510. (f) Higgins, R. H.; Eaton, Q. L.;
Worth, L.; Peterson, M. V. J. Heterocycl. Chem. 1987, 24, 255. (g)
Karikomi, M.; Arai, K.; Toda, T. Tetrahedron Lett. 1997, 38, 6059. (h)
Hayashi, K.; Sato, C.; Hiki, S.; Kumagai, T.; Tamai, S.; Abe, T.; Nagao,
Y. Tetrahedron Lett. 1999, 40, 3761. (i) Axenrod, T.; Watnick, C.;
Yazdekhasti, H.; Dave, P. R. J. Org. Chem. 1995, 60, 1959.
(4) (a) Okano, T.; Matsuoka, M.; Konishi, H.; Kiji, J. Chem. Lett. 1987,
181. (b) Kostochka, L. M.; Belostotskii, A. M.; Skoldinov, A. P. J. Org.
Chem. USSR (Engl. Transl.) 1982, 18, 2315. (c) McElvain, S. M.;
McMahon, R. E. J. Am. Chem. Soc. 1949, 71, 901. (d) Bolyard, N. W. J.
Am. Chem. Soc. 1930, 52, 1030. (e) Grob, C. A.; Brenneisen, P. HelV. Chim.
Acta 1958, 41, 1184. (f) Schaefgen, J. R.; Koontz, F. H.; Tietz, R. F. J.
Polym. Sci. 1959,40, 377. (g) Hall, H. K., Jr. J. Am. Chem. Soc. 1958, 80,
6412. (h) Coan, S. B.; Jaffe, B.; Papa, D. J. Am. Chem. Soc. 1956, 78,
3701. (i) Bowden, K.; Green, P. N. J. Chem. Soc. 1952, 1164. (j) McCann,
S. F.; Overman, L. E. J. Am. Chem. Soc. 1987, 109, 6107. (k) Larsen, S.
D.; Grieso, P. A.; Fobare, W. F. J. Am. Chem. Soc. 1986, 108, 3512. (l)
Dicko, A.; Montury, M.; Baboulene, M. Tetrahedron Lett. 1987, 28, 6041.
(m) Brown, H. C.; Prasad, J. V. N. V. J. Am. Chem. Soc. 1986, 108, 2049.
(n) Brown, H. C.; Prasad, J. V. N. V.; Zee, S.-H. J. Org. Chem. 1985, 50,
1582.
(8) (a) Aitken, S. J.; Grogan, G.; Chow, C.; Turner, N. J.; Flitsch, S. L.
J. Chem. Soc., Perkin Trans. 1 1998, 3365. (b) Archelas, A.; Furstoss, R.;
Srairi, D.; Maury, G. Bull. Soc. Chem. Fr. 1986, 234. (c) Johnson, R. A.;
Herr, M. E.; Murray, H. C.; Fonken, G. S. J. Org. Chem. 1968, 3187. (d)
Floyd, N.; Munyemana, F.; Roberts, S. M.; Willetts, A. J. J. Chem. Soc.,
Perkin Trans. 1 1993, 881.
(9) Parshikov, I. A.; Modyanova, L. V.; Dovgilivich, E. V.; Terent’ev,
P. B.; Vorob’eva, L. I.; Grishina, G. V. Chem. Heterocycl. Compd. (Engl.
Transl.) 1992, 28, 159.
(10) Lageveen, R. G.; Huisman, G. W.; Preusting, H.; Ketelaar, P.;
Eggink, G.; Witholt, B. Appl. EnViron. Microbiol. 1988, 54, 2924.
1860
Org. Lett., Vol. 4, No. 11, 2002