A R T I C L E S
Mabry and Johnson
structure has been observed in interstellar gas clouds.9 The
geometry and spectroscopic properties of cyclopropenylidene-
methylene (7) have been predicted,7b,10 but this interesting
carbene remains unknown. Bicyclo[1.1.0]buta-1,3-diene (5),
more commonly known as trialene or propalene, presents an
unusual π bond topology that has invited a variety of theoretical
studies,11 beginning with Hu¨ckel theory.11a,b Trialene was used
as an example in the classic 1961 HMO text by J. D. Roberts.11a
Nevertheless, its existence and involvement in C4H2 chemistry
have received almost no serious consideration. Baird and Dewar
first used the semiempirical MNDO method to predict a C2h
symmetric trialene structure, with alternating single and double
bonds.11c These authors further suggested that trialene might
be made by matrix photolysis of 3. Schleyer and co-workers
later predicted11g that 5 should easily convert to ethynyl-
vinylidene (4), itself lying in a shallow energy minimum.11g,h,12
Simkin predicted that bond shift isomerization in 5 will have a
low barrier, proceeding through a D2h structure.11h
Scheme 1. Synthesis and Pyrolysis of Labeled
1-Phenyl-4-p-tolyl-1,3-butadiyne
Table 1. 13C Label Distributions from NMR Integration
carbon no. (δ ppm)
C-1
C-2
C-3
C-4
(δ 81.87)
(δ 81.22)
(δ 74.05)
(δ 73.29)
unreacted 12
pyrolysis at 800 °C
pyrolysis at 900 °C
20.8
11.6
8.79
0.72
7.37
8.76
0.88
1.16
3.99
1.40
0.89
3.01
recently described calculations on 9 and the related biscarbene
11; these are predicted to be high-energy species.15
Results and Discussion: Experimental Studies
We investigated butadiyne thermal rearrangements through
preparation and pyrolysis (Scheme 1) of 13C-labeled 1-phenyl-
4-p-tolyl-1,3-butadiyne.16 This substance was chosen because
the aryl groups differentiate the sp carbons and also serve as
end-caps. This should allow C4 chain chemistry to occur, without
the fragmentations that are generally observed for alkyl-
substituted alkynes.17 The four sp hybridized carbons of this
diyne were found to be well-resolved in 13C NMR. Control
experiments demonstrated its thermal stability in flash pyrolysis
up to 950 °C. Diphenylbutadiyne rearranges to give polycyclic
aromatics above 1100 °C.18
The results of our experimental studies, including label
distributions and chemical shifts for sp-hybridized carbons, are
summarized in Scheme 1 and Table 1. A sample of diyne that
was ca. 20% 13C enriched at C-1 (isotopomer 12) was
synthesized from 13C-labeled benzaldehyde as shown. This level
of isotopic substitution was chosen so that all the sp carbons
could readily be observed and integrated in each spectrum.
Measurement of quantitative 13C spectra for the sp resonances
was facilitated by addition of chromium acetonylacetonate to
the sample.19
Several higher energy C4H2 structures are relevant to the
present work; these include 1,2,3-cyclobutatriene or cy-
clobutenyne (8a or 8b), tetrahedrene (9), and 1,3-butadiene-
1,4-diylidene (10).7a All of these substances are unknown. In
principle, 7 and 8 might interconvert by a 1,2-shift pathway,
which is similar to that predicted for cyclobutyne.13 Structures
8a and 8b represent the smallest homologues in the cyclic
butatriene or cyclic enyne series.14 Sauer and Harris very
(7) (a) Dykstra, C. E.; Parsons, C. A.; Oates, C. L. J. Am. Chem. Soc. 1979,
101, 1962-5. (b) Apeloig, Y.; Schrieber, R.; Stang, P. J. Tetrahedron Lett.
1980, 21, 411. (c) Maluendes, S. A.; McLean, A. D. Chem. Phys. Lett.
1992, 200, 511-17. (d) Fischer, G.; Maier, J. P. Chem. Phys. 1997, 223,
149-158. (e) Oswald, M.; Botschwina, P. J. Mol. Spectrosc. 1995, 169,
181-4.
(8) (a) Stang, P. J.; Fisk, T. E. J. Am. Chem. Soc. 1979, 101, 4772-3. (b)
Goldberg, N.; Suelzle, D.; Schwarz, H. Chem. Phys. Lett. 1993, 213, 593-
6. (c) Travers, M. J.; Chen, Wei; Novick, Stewart E.; Vrtilek, J. M.; Gottlieb,
C. A.; Thadedeus, P. J. Mol. Spectrosc. 1996, 180, 75-80.
(9) (a) Cernicharo, J.; Gottlieb, C. A.; Guelin, M.; Killian, T. C.; Thaddeus,
P.; Vrtilek, J. M. Astrophys. J. 1991, 368, L43-L45. (b) Kawaguchi, K.;
Kaifu, N.; Ohishi, M.; Ishikawa, S.; Hirahara, Y.; Yamamoto, S.; Saito,
S.; Takano, Shuro; Murakami, A. Publ. Astron. Soc. Jpn. 1991, 43, 607-
19 (c) Turner, B. E.; Herbst, Eric; Terzieva, R. Astrophys. J., Suppl. Ser.
2000, 126, 427-460.
Flash vapor pyrolysis of 13C-labeled diyne 12 at 800 °C/0.01
Torr led to nearly complete exchange between C-1 and C-2, as
shown by NMR integration (Table 1), but with good recovery
of starting material. Lower temperature reaction resulted only
in partial equilibration. Pyrolysis of samples at 900 °C similarly
exchanged C-1 and C-2 but also reproducibly resulted in ca.
(10) Collins, C. L.; Meredith, C.; Yamaguchi, Y.; Schaefer, H. F., III J. Am.
Chem. Soc. 1992, 114, 8694.
(11) Previous theoretical studies on trialene: (a) Roberts, J. D. Notes on
Molecular Orbital Calculations; W. A. Benjamin, Inc.: New York, 1962;
pp 120-126. (b) Heilbronner, E.; Staub, H. Huckel Molecular Orbitals;
Springer-Verlag: New York, 1966, (c) Baird, N. C.; Dewar, M. J. S. J.
Am. Chem. Soc. 1967, 89, 3966. (d) Toyota, A.; Nakajima, T. Theor. Chim.
Acta 1979, 53, 297. (e) Doehnert, D.; Koutecky, J. J. Am. Chem. Soc. 1980,
102, 1789. (f) Agranat, I.; Hess, B. A, Jr.; Schaad, L. J. Pure Appl. Chem.
1980, 52, 1399. (g) Andrade, J. G.; Chandrasekhar, J.; Schleyer, P. v. R.
J. Comput. Chem. 1981, 2, 207. (h) Simkin, B. Y.; Glukhovtsev, M. N.
Zh. Org. Khim. 1982, 18, 1337. (i) Jug, K. J. Org. Chem. 1983, 48, 1344.
(j) Sinanoglu, O. Tetrahedron Lett. 1988, 29, 889-92. (k) Alexander, S.
A.; Klein, D. J. J. Am. Chem. Soc. 1988, 110, 3401. (l) Aoki, Y.; Imamura,
A.; Murata, I. Tetrahedron 1990, 46, 6659. (m) Toyota, A.; Koseki, S. J.
Phys. Chem. 1996, 100, 2100.
(14) (a) Johnson, R. P. Chem. ReV. 1989, 89, 1111. (b) Meier, H. AdV. Strain
Org. Chem. 1991, 1, 215. (c) Hopf, H. Classics in Hydrocarbon Chemistry;
Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000.
(15) Sauers, R. R.; Harris, J. S. J. Org. Chem. 2001, 66, 7951.
(16) (a) Schroth, W.; Dunger, S.; Billig, F.; Spitzner, R.; Herzschuh, R.; Vogt,
A.; Jende, T.; Israel, G.; Barche, J. Tetrahedron 1996, 52, 12677. (b)
Nakasuji K.; Akiyama, S.; Akashi, K.; Nagakawa, M. Bull. Chem. Soc.
Jpn. 1970, 43, 3567.
(17) Brown, R. F. C. Recl. TraV. Chim. Pays-Bas 1988, 107, 655.
(18) Brown, R. F. C.; Eastwood, F. W.; Wong, N. R. Tetrahedron Lett. 1993,
34, 3607.
(19) (a) El-Shahed, F.; Doerffel, K.; Radeglia, R. J. Prakt. Chem. 1979, 321,
859. (b) Levy, G. C.; Edlund, U. J. Am. Chem. Soc. 1975, 97, 4482. (c)
Shoolery, J. N. Varian Instrum. Appl. 1976, 10, 10.
(12) Collins, C. L.; Hu, C. H.; Yamaguchi, Y.; Schaefer, H. F., III Isr. J. Chem.
1993, 33, 317.
(13) Johnson, R. P.; Daoust, K. J. J. Am. Chem. Soc. 1995, 117, 362.
9
6498 J. AM. CHEM. SOC. VOL. 124, NO. 22, 2002