10.1002/ejoc.202000295
European Journal of Organic Chemistry
FULL PAPER
Analytic details of 1b: 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.34 (s, 1H),
6.84 (s, 1H), 6.00 (q, J = 9.0 Hz, 1H), 2.05 (s, 3H), 2.02 (s, 3H) ppm; 19F-
NMR (282 MHz, CDCl3, 298 K): δ = -55.40 (d, J = 9 Hz, 3F) ppm; 13C-NMR
(125 MHz, CDCl3, 298 K): δ = 186.9, 140.0, 139.4, 137.8 (q, J = 5.5 Hz),
135.8, 128.7, 124.0 (q, J = 34.8 Hz), 122.7 (q, J = 271.7 Hz), 16.8, 16.2
ppm. HRMS (ESI): m/z calculated for C10H9F3O: 201.0533 [M-H]-; found:
201.0535.
Fochi, L. Bernardi, Molecules 2015, 20, 11733-11764; (f) A. Parra, M. Tortosa,
ChemCatChem 2015, 7, 1524-1526; (g) D. V. Osipov, V. A. Osyanin, Y. N.
Klimochkin, Russ. Chem. Rev. 2017, 86, 625-687; (h) C. D. T. Nielsen, H. Abas,
A. C. Spivey, Synthesis, 2018, 50, 4008-4018; (i) C. G. S. Lima, F. P. Pauli, D. C.
S. Costa, A. S. de Souza, L. S. M. Forezi, V. F. Ferreira, F. de Carvalho da Silva,
Eur. J. Org. Chem. 2020, 10.1002/ejoc.201901796.
For electrophilicities E of p-QMs see: a) R. Lucius, R. Loos, H. Mayr, Angew.
Chem. Int. Ed. 2002, 41, 91-95; b) D. Richter, N. Hampel, T. Singer, A. R. Ofial,
H. Mayr, Eur. J. Org. Chem. 2009, 3203-3211.
2
3
Analytic details of 12c: 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.60 (s, 2H),
6.07 (s, 1H), 5.00 (q, J = 6.7 Hz, 1H) ppm; 19F-NMR (282 MHz, CDCl3, 298
K): δ = -73.45 (d, J = 6.7 Hz, 3F) ppm; 13C-NMR (125 MHz, CDCl3, 298
K): δ = 151.1, 132.5, 128.7, 123.2 (q, J = 278.8 Hz), 110.2, 50.0 (q, J =
34.4 Hz) ppm. HRMS (ESI): m/z calculated for C8H4Br2ClF3O: 366.8342
[M+H]+; found: 366.8348..
For selected very recent asymmetric 1,6-additions of C-nucleophiles: a) Y.
Wang, K. Wang, W. Cao, X. Liu, X. Feng, Org. Lett. 2019, 21, 6063-6067; b) Y.
Cheng, Z. Gang, Y. Jia, Z. Lu, W. Li, P. Li, RSC Adv. 2019, 9, 24212-24217; c) D.
Wang, Z.-F. Song, W.-J. Wang, T. Xu, Org. Lett. 2019, 21, 3963-3967; d) J.-R.
Wang, X.-L. Jiang, Q.-Q. Hang, S. Zhang, G.-J. Mei, F. Shi, J. Org. Chem. 2019,
84, 7829-7839; e) G.-B. Huang, W.-H. Huang, J. Guo, D.-L. Xu, X.-C. Qu, P.-H.
Zhai, X.-H. Zheng, J. Wenig, G. Lu, Adv. Synth. Catal. 2019, 361, 1241-1246; f)
Y.-J. Fan, L. Zhou, S. Li, Org. Chem. Front. 2018, 5, 1820-1824; g) L. Zhang, H.
Yuan, W. Lin, Y. Cheng, P. Li, W. Li, Org. Lett. 2018, 20, 4970-4974; h) Z. Sun,
B. Sun, N. Kumagai, M. Shibasaki, Org. Lett. 2018, 20, 3070-3073; i) W. Li, X.
Xu, Y. Liu, H. Gao, Y. Cheng, P. Li, Org. Lett. 2018, 20, 1142-1145; j) Z.-P. Zhang,
K.-X. Xie, C. Yang, M. Li, X. Li, J. Org. Chem. 2018, 83, 364-373; k) Y.-Y. Gao, Y.-
Z. Hua, M.-C. Wang, Adv. Synth. Catal. 2018, 360, 80-85.
For selected 1,6-additions of heteroatom-nucleophiles: a) Y. N. Aher, A. B.
Pawar, Org. Biomol. Chem. 2019, 17, 7536-7546; b) X.-Y. Guan, L.-D. Zhang,
P.-S. You, S.-S. Liu, Z.-Q. Liu, Tetrahedron Lett. 2019, 60, 244-247; c) B. Xiong,
G. Wang, C. Zhou, Y. Liu, W. Xu, W.-Y. Xu, C.-A. Yang, K.-W. Tang, Eur. J. Org.
Chem. 2019, 3273-3282; d) Y.-J. Fan, L. Zhou, S. Li, Org. Chem. Front. 2018, 5,
1820-1824; e) N. Dong, Z.-P. Zhang, X.-S. Xue, X. Li, J.-P. Cheng, Angew. Chem.
Int. Ed. 2016, 55, 1460-1464; f) P. Arde, R. V. Anand, Org. Biomol. Chem. 2016,
14, 5550-5554; g) C. Jarava-Barrera, A. Parra, A. Lopez, F. Cruz-Acosta, D.
Collado-Sanz, D. J. Cardenas, M. Tortosa, ACS Catal. 2016, 6, 442-446; h) Y.
Lou, P. Cao, T. Jia, Y. Zhang, M. Wang, J. Liao, Angew. Chem. Int. Ed. 2015, 54,
12134-12138; i) A. Lopez, A. Parra, C. Jarava-Barrera, M. Tortosa, Chem.
Commun. 2015, 51, 17684-17687.
Analytic details of 12d: 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.22 (s, 1H),
7.17 (s, 1H), 5.03 (q, J = 7.0 Hz, 1H), 2.27 (s, 3H), 1.42 (s, 9H) ppm; 19F-
NMR (282 MHz, CDCl3, 298 K): δ = -73.21 (d, J = 7.0 Hz, 3F) ppm; 13C-
NMR (125 MHz, CDCl3, 298 K): δ = 154.2, 138.0, 136.1, 129.2, 128.8,
128.4, 126.1, 125.4, 123.7, 123.7 (q, J = 279.1 Hz), 123.5, 59.2 (q, J =
34.1 Hz), 34.7, 29.7, 16.1 ppm. HRMS (ESI): m/z calculated for
C13H16ClF3O: 281.0915 [M+H]+; found: 281.0915.
4
Analytic details of 12e: 1H NMR (300 MHz, CDCl3, 298 K): δ = 6.71 (s, 2H),
5.65 (s, 1H), 5.03 (q, J = 6.7 Hz, 1H), 3.92 (s, 6H) ppm; 19F-NMR (282
MHz, CDCl3, 298 K): δ = -73.20 (d, J = 6.7 Hz, 3F) ppm; 13C-NMR (125
MHz, CDCl3, 298 K): δ = 147.1, 136.4, 129.1, 128.4, 125.4, 123.8 (q, J =
282.8 Hz), 123.1, 105.8, 59.3 (q, J = 35.0 Hz), 56.6 ppm. HRMS (ESI): m/z
calculated for C10H10ClF3O3: 271.0343 [M+H]+; found: 271.0339.
5
6
Hydride addition: T. Pan, P. Shi, B. Chen, D.-G. Zhou, Y.-L. Zeng, W.-D. Chu, L.
He, Q.-Z. Liu, C.-A. Fan, Org. Lett. 2019, 21, 6397-6402.
Selected spirocyclizations of p-QMs: a) S. B. Kale, P. K. Jori, T. Thatikonda, R.
G. Gonnade, U. Das, Org. Lett. 2019, 21, 7736-7740; b) S. Zhao, Y. Zhu, M.
Zhang, X. Song, J. Chang, Synthesis 2019, 51, 2136-2148 c) L. Roiser, K. Zielke,
M. Waser, Synthesis 2018, 50, 4047-4054; d) X. Z. Zhang, Y.-H. Deng, K.-J. Gan,
X. Yan, K.-Y. Yu, F.-X. Wang, C.-A. Fan, Org. Lett. 2017, 19, 1752-1755; e) L.
Roiser, M. Waser, Org. Lett. 2017, 19, 2338-2341; f) Z. Yuan, K. Gai, Y. Wu, J.
Wu, A. Lin, H. Yao, Chem. Commun. 2017, 53, 3485-3488; g) Z. Yuan, L. Liu, R.
Pan, H. Yao, A. Lin, J. Org. Chem. 2017, 82, 8743-8751; h) Z. Yuan, W. Wei, A.
Lin, H. Yao, Org. Lett. 2016, 18, 3370-3373; i) X.-Z. Zhang, J.-D. Du, Y.-H.
Deng,W.-D. Chu, X. Yan, K. Y. Yu, C.-A. Fan, J. Org. Chem. 2016, 81, 2598-2606;
j) Z. Yuan, X. Fang, X. Li, J. Wu, H. Yao, A. Lin, J. Org. Chem. 2015, 80, 11123-
11130; k) K. Gai, X. Fang, X. Li, J. Xu, X. Wu, A. Lin, H. Yao, Chem. Commun.
2015, 51, 15831-15834.
Acknowledgements
This work was generously supported by the Austrian Science
Funds (FWF): Project No. P30237 (financed by the Austrian
National Foundation for Research, Technology and Development
and Research Department of the State of Upper Austria). The
used NMR spectrometers were acquired in collaboration with the
University of South Bohemia (CZ) with financial support from the
European Union through the EFRE INTERREG IV ETC-AT-CZ
program (project M00146, "RERI-uasb")."). We thank Robert J.
Mayer (LMU München) for helpful discussions.
7
a) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok, K.
Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518; b) X. Yang, T. Wu, R. J. Phipps,
F. D. Toste, Chem. Rev. 2015, 115, 826-870;
For a review discussing the use of prochiral CF3-containing starting materials:
J. Nie, H.-C. Guo, D. Cahard, J.-A. Ma, Chem. Rev. 2011, 111, 455-529.
Trifluoromethylation reactions of QMs: a) K. G. Ghosh, P. Chandu, S. Mondal,
D. Sureshkumar, Tetrahedron, 2019, 75, 4471-4478; b) Q.-Y. Wu, G.-Z. Ao, F.
Liu, Org. Chem. Front. 2018, 5, 2061-2064.
8
9
Keywords: Quinone Methides
•
Trifluoromethylation
•
10 a) H. Mayr, M. Patz, Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957; b) H.
Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 77, 1807-1821; c) H. Mayr, A. R. Ofial,
SAR QSAR Environ. Res. 2015, 26, 619-646; d) H. Mayr, Tetrahedron 2015, 71,
5095-5111.
11 T. Umemoto, S. Furukawa, O. Miyano, S. Nakayama, Nippon Kagaku Kaishi,
1985, 2145-2154
Electrophilicity • Kinetic Investigations • Phase-Transfer Catalysis
1
For reviews on quinone methides: (a) T. P. Pathak, M. S. Sigman, J. Org. Chem.
2011, 76, 9210-9215; (b) W.-J. Bai, J.-G. David, Z.-G. Feng, M. G. Weaver, K.-L.
Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47, 3655-3664; (c) N. J. Willis, C. D.
Bray, Chem. Eur. J. 2012, 18, 9160-9173; (d) M. S. Singh, A. Nagaraju, N.
Anand, S. Chowdhury, RSC Adv. 2014, 4, 55924-55959; (e) L. Caruana, M.
12 The intermediate formation of a similar CF3-QM was observed in reactions of
trifluoroethanol-containing phenols: Y. Gong, K. Kato, Synlett, 2002, 431-434.
This article is protected by copyright. All rights reserved.