The ortho functionalization of N-(tert-butoxycarbonyl)-
aniline was used as the key strategy in our synthesis. Thus,
ortho metalation of 5 with excess tert-butyllithium at low
temperature provided the corresponding dilithio intermedi-
ate,9 which was treated with the aldehyde 68c to give rise to
a mixture of the alcohols 7/8. The diastereoisomers of 7 and
8 could not be separated efficiently by flash column
chromatography. Acid hydrolysis of 7/8 by treatment with
1 M HCl in THF at 70 °C yielded 9 and 10 in a ratio of ca.
1.3:1, which were readily separated chromatographically. The
absolute configuration of the newly generated hydroxyl group
of the two isomers was assigned by the X-ray crystal-
lographic analysis of 9. Coupling of the amines 9 and 10
with D-valine-derived triflate 1110 followed by simultaneous
removal of the benzyl ester and N-Cbz protecting groups by
catalytic hydrogenation provided the amino acids 12 and 13,
respectively (Scheme 1).
Figure 1.
PKC modulators. In connection with such efforts, we
reported that 8-(1-decynyl)benzolactam-V8 (2) exhibited
improved potency and selectivity for the classical isozymes.5
These results prompted us to synthesize additional benzolac-
tam-V8 analogues bearing substituents that may confer
enhanced isozyme selectivity.6
Scheme 1a
The X-ray crystal structure of the complex of the C1b
activator-binding domain of PKCδ with phorbol 13-acetate
has revealed how this phorbol ester binds to PKC.7 Although
the structure is incomplete from the standpoint of revealing
interactions with lipids, it nonetheless opens the possibility
for the rational design of selective PKC modulators through
the evaluation of their binding to the homologous PKC
isozymes using computer assisted docking methods.5,8 Herein
we describe the synthesis and modeling of the 6-hydroxyl-
substituted benzolactam-V8 analogues 3 and 4 as PKC
modulators. These compounds were designed with the idea
that the extra hydrogen bond donor group might enhance
PKC affinity and selectivity.
(3) (a) Meseguer, B.; Alonso-D´ıaz, D.; Griebenow, N.; Herget, T.;
Waldmann, H. Chem. Eur. J. 2000, 6, 3943. (b) Irie, K.; Isaka, T.; Iwata,
Y.; Yanai, Y.; Nakamura, Y.; Koizumi, F.; Ohigashi, H.; Wender, P. A.;
Satomi, Y.; Nishino, H. J. Am. Chem. Soc. 1996, 118, 10733. (c)
Kozikowski, A. P.; Ma, D.; Du, L.; Lewin, N. E.; Blumberg, P. M. J. Am.
Chem. Soc. 1995, 117, 6666. (d) Quick, J.; Saha, B.; Driedger, P. E.
Tetrahedron Lett. 1994, 35, 8549. (e) Kozikowski, A. P.; Ma, D.; Pang,
Y.-P.; Shum, P.; Likic, V.; Mishra, P. K.; Macura, S.; Basu, A.; Lazo, J.
S.; Ball, R. G. J. Am. Chem. Soc. 1993, 115, 3957. (f) Webb, R. R., II;
Venuti, M. C.; Eigenbrot, C. J. Org. Chem. 1991, 56, 4706. (g) Kozikowski,
A. P.; Shum, P. W.; Basu, A.; Lazo, J. S. J. Med. Chem. 1991, 34, 2420.
(h) Kozikowski, A. P.; Sato, K.; Basu, A.; Lazo, J. S. J. Am. Chem. Soc.
1989, 111, 6228.
(4) (a) Endo, Y.; Ohno, M.; Hirano, M.; Itai, A.; Shudo, K. J. Am. Chem.
Soc. 1996, 118, 1841. (b) Endo, Y.; Takehana, S.; Ohno, M.; Driedger, P.
E.; Stabel, S.; Mizutani, M. Y.; Tomioka, N.; Itai, A.; Shudo, K. J. Med.
Chem. 1998, 41, 1476.
(5) Kozikowski, A. P.; Wang, S.; Ma, D.; Yao, J.; Ahmad, S.; Glazer,
R. I.; Bogi, K.; Acs, P.; Modarres, S.; Lewin, N. E.; Blumberg, P. M. J.
Med. Chem. 1997, 40, 1316.
(6) (a) Ma, D.; Tang, W.; Kozikowski, A. P.; Lewin, N. E.; Blumberg,
P. M. J. Org. Chem. 1999, 64, 6366. (b) Ma, D.; Wang, G.; Wang, S.;
Kozikowski, A. P.; Lewin, N. E.; Blumberg, P. M. Bioorg. Med. Chem.
Lett. 1999, 9, 1371. (c) Ma, D.; Zhang, T.; Wang, G.; Kozikowski, A. P.;
Lewin, N. E.; Blumberg, P. M. Bioorg. Med. Chem. Lett. 2001, 11, 99.
(7) Zhang, G.; Kazanietz, M. G.; Blumberg, P. M.; Hurley, J. H. Cell
1995, 81, 917.
(8) (a) Qiao, L.; Wang, S.; George, C.; Lewin, N. E.; Blumberg, P. M.;
Kozikowski, A. P. J. Am. Chem. Soc. 1998, 120, 6629. (b) Wang, S.; Liu,
M.; Lewin, N. E.; Lorenzo, P. S.; Bhattacharrya, D.; Qiao, L.; Kozikowski,
A. P.; Blumberg, P. M. J. Med. Chem. 1999, 42, 3436. (c) Zhao, L.; Qiao,
L.; Rong, S.-B.; Kozikowski, A. P. Tetrahedron Lett. 2000, 41, 8711. (d)
Qiao, L.; Zhao, L.-Y.; Rong, S.-B.; Wu, X.-W.; Wang, S.; Fujii, T.;
Kazanietz, M. G.; Rauser, L.; Savage, J.; Roth, B. L.; Flippen-Anderson,
J.; Kozikowski, A. P. Bioorg. Med. Chem. Lett. 2001, 11, 955.
a (i) t-BuLi (2.2 equiv), THF, -78 to -20 °C, 2 h, then 6, -20
°C, 5 h, 31%. (ii) 1 M HCl, THF, 70 °C, 5 h, 87%. (iii) 11, 2,6-
lutidine, 1,2-dichloroethane, 70 °C, 72 h, 65-67%. (iv) 10% Pd-
C, H2 (1 atm), ethanol, rt, 24 h, 100%. (v) See Table 1.
With the amino acids 12 and 13 in hand, their lactamiza-
tion to 14 and 15 was investigated. Two procedures, BOP/
HOBt/NMM/DMF and DPPA/Et3N/DMF, were examined
for this cyclization reaction. The results are summarized in
Table 1. The erythro-isomer 12 could be readily lactamized
(9) Muchowski, J. M.; Venuti, M. C. J. Org. Chem. 1980, 45, 4798.
(10) Kogan, T. P.; Somers, T. C.; Venuti, M. C. Tetrahedron 1990, 46,
6623.
2170
Org. Lett., Vol. 4, No. 13, 2002