10.1002/anie.202104863
Angewandte Chemie International Edition
COMMUNICATION
[8]
[9]
H. C. Hang, J. P. Wilson, G. Charron, Acc. Chem. Res. 2011, 44, 699-
708.
Fluorophore-labeled protein was observed within 1 min, and the
experiment demonstrated expected time-dependent labeling over
1 h (Figure 5C). Labeling also proved concentration-dependent
across a range of concentrations up to 200 µM, as expected
(Figure 5D). No labeling was observed in the absence of either
the alkyne or hydroxylamine. Formation of the desired protein-
fluorophore adduct upon hydroamination was verified by ESI-MS
(Figure S11).
Finally, we explored live cell labeling by hydroamination
(Figures 5E and S12). HEK293T cells were transiently transfected
with a cell surface HaloTag-GFP construct, treated with 10 μM
HaloTag linker-conjugated difluoropropargyl ether 24, washed,
and incubated with 50 μM TAMRA-conjugated hydroxylamine 25
for 1 h. The cells were then fixed and visualized by confocal
microscopy. TAMRA signal from cells treated with alkyne 24 and
hydroxylamine 25 localized to the cell surface and co-localized
with the GFP signal of transfected cells. Importantly, negative
controls lacking the alkyne and/or hydroxylamine did not exhibit
significant labeling. These experiments demonstrated the
specificity and efficacy of the reaction in cellular ligation
applications.
A. Laguerre, C. Schultz, Curr. Opin. Cell Biol. 2018, 53, 97-104.
[10] J. Flores, B. M. White, R. J. Brea, J. M. Baskin, N. K. Devaraj, Chem.
Soc. Rev. 2020, 49, 4602-4614.
[11] N. J. Agard, C. R. Bertozzi, Acc. Chem. Res. 2009, 42, 788-797.
[12] S. T. Laughlin, C. R. Bertozzi, Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
12-17.
[13] E. M. Sletten, C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 666-676.
[14] S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi, Science 2008,
320, 664-667.
[15] M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008, 130,
13518-13519.
[16] N. K. Devaraj, R. Weissleder, S. A. Hilderbrand, Bioconjugate Chem.
2008, 19, 2297-2299.
[17] E. M. Sletten, C. R. Bertozzi, J. Am. Chem. Soc. 2011, 133, 17570-
17573.
[18] D. M. Patterson, L. A. Nazarova, B. Xie, D. N. Kamber, J. A. Prescher,
J. Am. Chem. Soc. 2012, 134, 18638-18643.
[19] R. D. Row, H.-W. Shih, A. T. Alexander, R. A. Mehl, J. A. Prescher, J.
Am. Chem. Soc. 2017, 139, 7370-7375.
[20] J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T.
Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, F. L. van Delft, Angew.
Chem., Int. Ed. 2010, 49, 9422-9425.
We have described a bioorthogonal reaction between N,N-
dialkylhydroxylamines and halogenated alkynes. We explored the
use of rehybridization effects in activating alkynes, and we found
that electronic effects, when competing stereoelectronic and
inductive factors are properly balanced, sufficiently activate a
linear alkyne in the uncatalyzed conjugative retro-Cope
elimination reaction while adequately protecting it against cellular
nucleophiles. This design preserves the low steric profile of an
alkyne and pairs it with a comparably unobtrusive hydroxylamine.
The kinetics are on par with those of the fastest strain-promoted
[21] X. Ning, J. Guo, M. A. Wolfert, G.-J. Boons, Angew. Chem., Int. Ed. 2008,
47, 2253-2255.
[22] N. E. Mbua, J. Guo, M. A. Wolfert, R. Steet, G.-J. Boons, ChemBioChem
2011, 12, 1912-1921.
[23] J. C. Jewett, E. M. Sletten, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132,
3688-3690.
[24] G. de Almeida, E. M. Sletten, H. Nakamura, K. K. Palaniappan, C. R.
Bertozzi, Angew. Chem., Int. Ed. 2012, 51, 2443-2447.
[25] N. J. Agard, J. M. Baskin, J. A. Prescher, A. Lo, C. R. Bertozzi, ACS
Chem. Biol. 2006, 1, 644-648.
[26] J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I.
A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 16793-16797.
azide-alkyne
cycloaddition
reactions,
the
products
regioselectively formed, the components sufficiently stable and
easily installed, and the reaction suitable for cellular labeling.
Furthermore, this method introduces a unique enamine N-oxide
molecular linchpin, which has potential for further functional
development.
[27] R. Ni, N. Mitsuda, T. Kashiwagi, K. Igawa, K. Tomooka, Angew. Chem.,
Int. Ed. 2015, 54, 1190-1194.
[28] Y. Hu, J. M. Roberts, H. R. Kilgore, A. S. Mat Lani, R. T. Raines, J. M.
Schomaker, J. Am. Chem. Soc. 2020, 142, 18826-18835.
[29] N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem. Soc. 2004, 126,
15046-15047.
[30] J. Yang, J. Šečkutė, C. M. Cole, N. K. Devaraj, Angew. Chem., Int. Ed.
2012, 51, 7476-7479.
Acknowledgements
[31] H. Tao, F. Liu, R. Zeng, Z. Shao, L. Zou, Y. Cao, J. M. Murphy, K. N.
Houk, Y. Liang, Chem. Commun. (Cambridge, U. K.) 2018, 54, 5082-
5085.
We thank Dr. Scott Ficarro and the DFCI Blais Proteomics Center
for assistance with protein mass spectrometry. This research was
supported by the NIH NIEHS (1DP2ES030448) and the Claudia
Adams Barr Program for Innovative Cancer Research.
[32] K. A. Andersen, M. R. Aronoff, N. A. McGrath, R. T. Raines, J. Am. Chem.
Soc. 2015, 137, 2412-2415.
[33] D. Kang, J. Kim, J. Am. Chem. Soc. 2021, 143, 5616-5621.
[34] N. A. McGrath, R. T. Raines, Chem. Sci. 2012, 3, 3237-3240.
[35] W. R. Algar, P. Dawson, I. L. Medintz, Chemoselective and
Bioorthogonal Ligation Reactions: Concepts and Applications, Wiley-
VCH, Weinheim, 2017.
Keywords: retro-Cope elimination • hydroamination •
bioorthogonal • rehybridization effect • enamine N-oxide
[36] T. Hanamoto, Y. Koga, T. Kawanami, H. Furuno, J. Inanaga, Angew.
Chem., Int. Ed. 2004, 43, 3582-3584.
[1]
V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem., Int. Ed. 2002, 41, 2596-2599.
[37] I. V. Alabugin, M. Manoharan, J. Comput. Chem. 2007, 28, 373-390.
[38] I. A. O'Neil, M. McConville, K. Zhou, C. Brooke, C. M. Robertson, N. G.
Berry, Chem. Commun. (Cambridge, U. K.) 2014, 50, 7336-7339.
[39] N. Castagnoli, J. Cymerman Craig, A. P. Melikian, S. K. Roy,
Tetrahedron 1970, 26, 4319-4327.
[2]
[3]
J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302-1315.
S. Neumann, M. Biewend, S. Rana, W. H. Binder, Macromol. Rapid
Commun. 2020, 41, 1900359.
[4]
K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 19-24.
[40] J. Moran, S. I. Gorelsky, E. Dimitrijevic, M.-E. Lebrun, A.-C. Bédard, C.
Séguin, A. M. Beauchemin, J. Am. Chem. Soc. 2008, 130, 17893-17906.
[41] A. M. Beauchemin, Org. Biomol. Chem. 2013, 11, 7039-7050.
[42] E. Ciganek, J. M. Read, J. C. Calabrese, J. Org. Chem. 1995, 60, 5795-
5802.
[5]
[6]
J. A. Prescher, C. R. Bertozzi, Nat. Chem. Biol. 2005, 1, 13-21.
T. Plass, S. Milles, C. Koehler, C. Schultz, E. A. Lemke, Angew. Chem.,
Int. Ed. 2011, 50, 3878-3881.
[7]
C. G. Parker, M. R. Pratt, Cell 2020, 180, 605-632.
[43] D. Kang, S. T. Cheung, A. Wong-Rolle, J. Kim, ACS Cent. Sci. 2021, 7,
631-640.
5
This article is protected by copyright. All rights reserved.