A R T I C L E S
Palomo et al.
Figure 2. Main features of the synthetic strategy.
C-glycosides; (2) the stereochemistry during the process of C-C
bond formation at both the anomeric and the C-â positions must
be fully controlled; and (3) it would be desirable to obtain
monomeric C-glycosyl â-amino acid units that are directly
amenable to a further peptide-type coupling step, while keeping
the functional group protection/deprotection events at a mini-
mum.
Figure 1. Prototypical sugar-peptide links in native (I and II) and mimetic
(III, IV, and V) glycopetides. The new sugar-amino acids pattern VI
reported herein is framed.
To adhere well to the above requirements, we envisaged the
strategy depicted in Figure 2. The key element of the route is
the Mannich reaction of a chiral acetate enolate or equivalent
with the corresponding azomethine function.11 This reaction,
when compared with other approaches to â-amino carbonyls,
inter alia â-amino acids,12 makes it possible to create the C-C
bond and the new stereogenic center(s) in a single synthetic
operation. Despite this synthetic potential11 and the recent
advances in the area of diastereoselective,13 enantioselective,14
and direct15 methods, there are two inherent problems that
hamper the use of the Mannich reaction to increase the pool of
available â-amino acids: the tendency of enolizable aldehyde-
derived azomethines to undergo R-deprotonation rather than
addition,16 and the lack of efficient stereocontrol during the C-C
bond formation process, especially in reactions involving acetate
documented to have significant activity.5 In addition, some
isosteres have demonstrated greater stability6 and bioavailabil-
ity,7 thus increasing the chances for potential therapeutic use.
Of interest are the new glycan-peptide links designed to
substitute the chemically and enzymatically labile O- or
N-glycosyl bond found in native glycopeptides (Figure 1).8
On the other hand, structures comprised of a â-amino acid
oligomeric backbone, that is, â-peptides, have emerged as
promising tools for extending the understanding of protein
structure and stabilization into the realm of folded, nonbiological
polymers.9 Like R-peptides, â-peptides have been shown to fold
into helices, sheets, and turns which are the main structural
elements of proteins, and, in some instances, it has been found
that they possess even higher biological activity than their parent
R-peptides.10 Additionally, â-peptides show greater resistance
to peptidases and proteases, a property that is of interest in
pharmaceutical drug development.9,10 From these precedents,
it could be anticipated that glycoconjugates comprised of a sugar
and a â-peptide unit, both linked through a C-glycosyl bond,
may constitute interesting targets for study. Here we report the
first synthetic approach to this new type of glycoconjugates VI
which relies on a stereoselective Mannich reaction as the key
strategic element.
(11) (a) Mannich, C.; Kro¨sche, W. Arch. Pharm. (Weinheim, Ger.) 1912, 250,
647. For a recent review, see: (b) Arend, M.; Westermann, B.; Risch, N.
Angew. Chem., Int. Ed. 1998, 37, 1044-1070.
(12) For reviews on â-amino acids, see: (a) Cole, D. C. Tetrahedron 1994, 50,
9517-9582. (b) Cardillo, G.; Tomassini, C. Chem. Soc. ReV. 1996, 117-
128. (c) EnantioselectiVe Synthesis of â-Amino Acids; Juaristi, E., Ed.;
Wiley-VCH: Weinheim, New York, 1997. (d) Abdel-Magid, A. F.; Cohen,
J. H.; Maryanoff, C. A. Curr. Med. Chem. 1999, 6, 955-970. (e) Juaristi,
E.; Lo´pez-Ruiz, H. Curr. Med. Chem. 1999, 6, 983-1004.
(13) From trialkylsilyl ketene acetals: (a) Kunz, H.; Burgard, A.; Schanzenbach,
D. Angew. Chem., Int. Ed. Engl. 1997, 36, 386-387. (b) Guenoun, F.; Zair,
T.; Lamaty, F.; Pierrot, M.; Lazaro, R.; Viallefont, P. Tetrahedron Lett.
1997, 38, 1563-1566. (c) Higashiyama, K.; Kyo, H.; Takahashi, H. Synlett
1998, 489-494. (d) Mu¨ller, R.; Ro¨ttele, H.; Henke, H.; Waldmann, H.
Chem.-Eur. J. 2000, 6, 2032-2043. (e) Enders, D.; Oberbu¨rsch, S.; Adam,
J. Synlett 2000, 644-646. (f) Allef, P.; Kunz, H. Tetrahedron: Asymmetry
2000, 11, 375-378. (g) Vicario, J. L.; Bad´ıa, D.; Carrillo, L. Org. Lett.
2001, 3, 773-776. (h) McLaren, A. B.; Sweeney, J. B. Synlett 2000, 1625-
1627. From enolates of N-acyl oxazolidinones and related systems: (i)
Abrahams, I.; Motevalli, M.; Robincon, A. J.; Wyatt, P. B. Tetrahedron
1994, 50, 12755-12772. (j) Roos, G. H. P.; Balasubramaniam, S. Synth.
Commun. 1999, 29, 755-762. (k) Kawakami, T.; Ohtake, H.; Arakawa,
H.; Okachi, T.; Imada, Y.; Murahashi, S.-I. Chem. Lett. 1999, 795-796.
(14) Review: (a) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069-1094.
Leading examples: (b) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem.
Soc. 1997, 119, 7153-7154. (c) Kobayashi, S.; Ishitani, H.; Ueno, M. J.
Am. Chem. Soc. 1998, 120, 431-432. (d) Ishitani, H.; Ueno, M.; Kobayashi,
S. J. Am. Chem. Soc. 2000, 122, 8180-8186. (e) Fujii, A.; Hagiwara, E.;
Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450-5458. (f) Hagiwara, E.;
Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474-2475. (g)
Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998,
120, 4548-4549. (h) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J., III;
Dudding, T.; Lectka, T. J. Org. Chem. 1998, 63, 6090-6091. (i) Ferraris,
D.; Dudding, T.; Young, B.; Drury, W. J., III; Lectka, T. J. Org. Chem.
1999, 64, 2168-2169. (j) Xue, S.; Yu, S.; Deng, Y.; Wulff, N. D. Angew.
Chem., Int. Ed. 2001, 40, 2271-2274. (k) Juhl, K.; Gathergood, N.;
Jørgensen, K. A. Angew. Chem, Int. Ed. 2001, 40, 2995-2997.
Results and Discussion
Synthetic Plan and Challenges. A satisfactory approach to
C-glyco â-amino acids has at least three requirements: (1) it
must be chemically efficient, starting from readily affordable
(5) For some relevant examples, see: (a) Bertozzi, C. R.; Cook, D. G.; Kobertz,
W. R.; Gonza´lez-Scarano, F.; Bednarski, M. D. J. Am. Chem. Soc. 1992,
114, 10639-10641. (b) Nagy, J. O.; Wang, P.; Gilbert, J. H.; Schaefer, M.
E.; Hill, T. G.; Callstrom, M. R.; Bednarski, M. D. J. Med. Chem. 1992,
35, 4501-4502. (c) Kishi, Y. Pure Appl. Chem. 1993, 65, 771-778. (d)
Marron, G.; Woltering, T. J.; Waitz-Schmidt, G.; Wong, C.-H. Tetrahedron
Lett. 1996, 37, 9037-9040. (e) Wang, L.-X.; Tang, M.; Suzuki, T.;
Kitajima, K.; Inoue, Y.; Inoue, S.; Fan, J.-Q.; Lee, Y. C. J. Am. Chem.
Soc. 1997, 119, 11137-11146. (f) Marcaurelle, L. A.; Rodriguez, E. C.;
Bertozzi, C. R. Tetrahedron Lett. 1998, 39, 8417-8420.
(6) For a comparative study, see: Sparks, M. A.; Williams, K. W.; Whitesides,
G. M. J. Med. Chem. 1993, 36, 778-783.
(7) (a) Fisher, J. F.; Harrison, A. W.; Bundy, G. L.; Wilkinson, K. F.; Rush,
B. D.; Ruwart, M. J. J. Med. Chem. 1991, 34, 3140-3143. (b) Mehta, S.;
Meldal, M.; Duus, J. O.; Bock, K. J. Chem. Soc., Perkin Trans. 1 1999,
1445-1451.
(15) (a) Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron Lett. 1999, 40, 307-
310. (b) Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron 1999, 55, 8857-
8867. (c) List, B. J. Am. Chem. Soc. 2000, 122, 9336-9337. (d) List, B.;
Pojorliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124,
827-833. (e) Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F.,
III. Tetrahedron Lett. 2001, 42, 199-201. (f) Co´rdova, A.; Notz, W.; Zhong,
G.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1842-
1843. (g) Co´rdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz, W.; Barbas, C.
F., III. J. Am. Chem. Soc. 2002, 124, 1866-1867.
(8) Schweizer, F. Angew. Chem., Int. Ed. 2002, 41, 230-253.
(9) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101,
3219-3232.
(10) For a detailed information on these subjects, see: (a) Seebach, D.; Mathews,
J. L. Chem. Commun. 1997, 2015-2022. (b) Koert, U. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1836-1837. (c) Gellman, S. H. Acc. Chem. Res. 1998,
31, 173-180. (d) Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr.
Med. Chem. 1999, 6, 905-925.
9
8638 J. AM. CHEM. SOC. VOL. 124, NO. 29, 2002