metal is centered between the donor ligands with equivalent
trans-N–N, 1.934(3) and 1.928(3) Å bond lengths, and a
slightly distended cis-Ni(1)–N(23) bond length of 1.964(2) Å.
The latter may be explained by the trans-effect of the more
Lewis basic alkenyl, C(21), donor. The shorter Ni(1)–C(21)
bond length of 1.897(3) Å is consistent with the smaller
covalent bonding radius of carbon compared to nitrogen.
As the nickel(II) complexes 6 were formed under very mild
conditions, the corresponding palladium chelates 8 were
considered to be viable targets for synthesis. Indeed, reaction of
5a or 5b with palladium(II) acetate in DMF afforded 8a and 8b
in 72–93% yield. The UV-Vis spectra showed three moderate
bands in the Soret region (368, 412 and 447 nm for 8a and
slightly red shifted values for the diphenyl chelate 8b) together
with a broad band near 580 nm Fig. 1B). The system shows
slightly downfield shifted meso-resonances compared to the
nickel(II) chelates (Dd ≈ 0.15 ppm) suggesting that the
palladium chelates possess a larger diatropic ring current than
the corresponding nickel derivatives.‡ In porphyrins, the methyl
substituents commonly resonate near 3.6 ppm. In 6b, the methyl
unit appears at 3.09 ppm while the related palladium complex
8b gave a value of 3.18 ppm. Again, these values suggest that
the diatropic ring current for the palladium chelates 8 is
significantly greater than in the nickel(II) derivatives 6, although
neither series of azuliporphyrin chelates show shifts that are
comparable to fully aromatic porphyrinoid systems. The
structures of the palladium complexes were confirmed by
carbon-13 NMR spectroscopy and high resolution EI MS. At
this time, it has not proven possible to obtain X-ray crystallo-
graphic data for 8a or 8b. Reaction of azuliporphyrins 5 with
copper(II) acetate has been shown to afford stable derivatives
but these paramagnetic derivatives have not yet been fully
characterized.
The preliminary results demonstrate that the CNNN cavity of
azuliporphyrins is well suited for the synthesis of novel
organometallic derivatives and this system will provide a
valuable platform for coordination chemistry.
This work was supported by the National Science Foundation
under Grant Nos. CHE-9732054 and CHE-0134472, and the
Donors of the Petroleum Research Fund, administered by the
American Chemical Society. The authors thank Dr R. McDo-
nald and the University of Alberta X-ray Crystallography
Laboratory for the collection of low-temperature, CCD X-ray
data.
Notes and references
‡ Selected spectroscopic data: 6b: mp > 300 °C; UV-Vis (CHCl3): lmax
(log10e) 392 (4.72), 457 (4.52), 558 (4.32), 641 nm (4.10); 1H NMR (d5-
pyridine): d 1.51 (6H, t, J = 7.6 Hz), 3.09 (6H, s), 3.33 (4H, q, J = 7.6 Hz),
7.45–7.61 (9H, m), 7.76 (4H, d), 9.10 (2H, s), 9.23 (2H, d), 9.63 (2H, s); 13
C
NMR (d5-pyridine): d 10.9, 16.6, 19.4, 99.5, 108.0, 127.9, 128.9, 129.6,
131.7, 132.1, 135.8, 136.5, 138.3, 138.9, 142.1, 143.3, 146.1, 147.4, 151.3,
153.9, 155.5; HRMS: calcd for C44H35N3Ni: m/z 663.2184. Found:
663.2182. Anal. Calcd. for C44H35N3Ni: C, 79.53; H, 5.31; N, 6.32. Found:
C, 79.09; H, 5.17; N, 6.41%. 8b: mp > 300 °C; UV-Vis (CHCl3): lmax
1
(log10e) 380 (4.82), 415 (4.78), 450 (4.69), 580 (4.15), 638 nm (3.92); H
NMR (d5-pyridine): d 1.58 (6H, t), 3.18 (6H, s), 3.42 (4H, q), 7.45–7.58
(9H, m), 7.66 (2H, t), 8.03 (2H, d), 9.25 (2H, s), 9.80 (2H, s); 13C NMR (d5-
pyridine): d 10.9, 16.6, 19.5, 100.2, 110.2, 126.4, 127.9, 129.0, 132.2, 132.6,
137.2, 137.5, 139.3, 141.3, 142.8, 143.7, 143.8, 146.0, 148.8, 149.2, 155.5;
HRMS: calcd for C44H35N3Pd: m/z 711.1866. Found: 711.1882. Anal.
Calcd. for C44H35N3Pd: C, 73.89; H, 4.93; N, 5.87. Found: C, 73.28; H,
4.70; N, 5.72%.
§ Crystal data for 6b: C44H35N3Ni, M = 664.5, monoclinic space group
P21/n (no. 14), Dc = 1.378 g cm23, Z = 4, a = 31.028(2), b = 8.8409(6),
c = 11.7434(8) Å, b = 96.166(2)°, V = 3202.8(4) Å3, T = 193 K, m =
(Mo-Ka) = 0.644 mm21, 14860 reflections measured, 6534 unique, final
2
R1 = 0.052, wR2(F2) = 0.116 for 433 parameters and 4718 data with Fo
>
2s(Fo2). CCDC 179074. See http://www.rsc.org/suppdata/cc/b2/
b200131b/ for crystallographic files in .cif or other electronic format.
1 P. J. Chmielewski, L. Latos-Grazynski, K. Rachlewicz and T. Glowiak,
Angew. Chem., Int. Ed. Engl., 1994, 33, 779.
2 H. Furuta, T. Asano and T. Ogawa, J. Am. Chem. Soc., 1994, 116,
767.
3 L. L. Latos-Grazynski, in The Porphyrin Handbook, Vol. 2, ed. K. M.
Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000,
pp. 361–416.
4 P. J. Chmielewski and L. Latos-Grazynski, J. Chem. Soc., Perkin Trans.
2, 1995, 503; P. J. Chmielewski, L. Latos-Grazynski and T. Glowiak, J.
Am. Chem. Soc., 1996, 118, 5690; T. D. Lash, D. T. Richter and C. M.
Shiner, J. Org. Chem., 1999, 64, 7973.
5 (a) P. J. Chmielewski and L. Latos-Grazynski, Inorg. Chem., 1997, 36,
840; (b) H. Furuta, T. Ogawa, Y. Uwatoko and K. Araki, Inorg. Chem.,
1999, 38, 2676; (c) P. J. Chmielewski, L. Latos-Grazynski and I.
Schmidt, Inorg. Chem., 2000, 39, 3475; (d) H. Furuta, N. Kubo, H.
Maeda, T. Ishizuka, A. Osuka, H. Nanami and T. Ogawa, Inorg. Chem.,
2000, 39, 5424.
6 T. D. Lash, Angew. Chem., Int. Ed. Engl., 1995, 34, 2533; T. D. Lash,
S. T. Chaney and . Richter, J. Org. Chem., 1998, 63, 9076; D. T. Richter
and T. D. Lash, Tetrahedron, 2001, 57, 3659.
7 T. D. Lash, Synlett, 2000, 279.
8 T. D. Lash, in The Porphyrin Handbook, Vol. 2, ed. K. M. Kadish, K.
M. Smith and R. Guilard, Academic Press, San Diego, 2000, pp
125–199.
9 T. D. Lash and M. J. Hayes, Angew. Chem., Int. Ed. Engl., 1997, 36,
840.
10 T. D. Lash and S. T. Chaney, Tetrahedron Lett., 1996, 37, 8825.
11 T. D. Lash and S. T. Chaney, Angew. Chem., Int. Ed. Engl., 1997, 36,
839.
12 M. J. Hayes, J. D. Spence and T. D. Lash, Chem. Commun., 1998,
2409.
Fig. 2 (a) Arial view ORTEP drawing (50% probability level) of 6b, with
hydrogen atoms arbitrarily drawn small. Selected bond lengths (Å) and
angles (°): Ni(1)–C(21) 1.897(3), Ni(1)–N(22) 1.934(3), Ni(1)–N(23)
1.964(2), Ni(1)–N(24) 1.928(3), C(1)–C(21) 1.417(5), C(4)–C(21)
1.426(5); C(1)–C(21)–C(4) 105.3(3), C(1)–C(21)–Ni(1) 127.5(2), C(4)–
C(21)–Ni(1) 127.2(2), C(21)–Ni(1)–N(23) 177.2(1), C(21)–Ni(1)–N(24)
89.8(2), N(22)–Ni(1)–N(24) 176.2(2), N(22)–Ni(1)–C(21) 90.4(2). (b)
Edge view ORTEP drawing of 6b.
13 However the first examples of organometallic derivatives of benzi- and
oxybenziporphyrins have recently been reported: (a) M. Stepian, L.
Latos-Grazynski, T. D. Lash and L. Szterenberg, Inorg. Chem., 2001,
40, 6892; (b) M. Stepien and L. Latos-Grazynski, Chem. Eur. J., 2001,
7, 5113.
14 Recently, carbaporphyrins 3 have been shown to react with silver(I)
acetate to afford the related silver(III) chelates: M. A. Muckey, L. F.
Szczepura, G. M. Ferrence and T. D. Lash, unpublished work.
CHEM. COMMUN., 2002, 894–895
895