trichloroborane is used to generate a reactive chloroborane
from a boronic ester 1a. Furthermore, the acid-sensitive
benzyloxy substituent survives alkyltrifluoroborate formation.
It is also significant that the reaction with potassium
bifluoride is the most efficient and generally useful method
that has been found to date for converting sterically hindered
asymmetric boronic esters to more reactive classes of
organoboranes.
The synthesis of the required boronic ester intermediates
followed well-established procedures.5 Bromopropylboronic
esters 8 are derived from the hydroboration of allyl bro-
mide.13 Azide substitution to form 9 was done according to
a recently improved phase transfer procedure,14 and asym-
metric homologation to boronic ester 10 has ample prece-
dent.5,14 The azide group is unaffected by formation of
trifluoroborate 11 (19F δ -146), but generation of postulated
difluoroborane 12 with tetrachlorosilane results in ring
closure to 13 (perhaps dimeric with tetracoordinate boron,
19F δ -151), which is readily hydrolyzed to (R)-2-phe-
nylpyrrolidine (14).
(7) (a) Tripathy, P. B.; Matteson, D. S. Synthesis 1990, 200-206. (b)
Wityak, J.; Earl, R. A.; Abelman, M. M.; Bethel, Y. B.; Fisher, B. N.;
Kauffman, G. S.; Kettner, C. A.; Ma, P.; McMillan, J. L.; Mersinger, L. J.;
Pesti, J.; Pierce, M. E.; Rankin., F. W.; Chorvat, R. J.; Confalone, P. N. J.
Org. Chem. 1995, 60, 3717-3722. (c) Matteson, D. S.; Man, H.-W.; Ho,
O. C. J. Am. Chem. Soc. 1996, 118, 4560-4566. (d) Matteson, D. S.; Man,
H.-W. J. Org. Chem. 1996, 61, 6047-6051.
(8) Matteson, D. S.; Hiscox W. C.; Fabry-Asztalos, L.; Kim, G.-Y.;
Siems, W. F., III. Organometallics 2001, 20, 2920-2923.
(9) The reversibility of the reaction has been demonstrated by the
formation of 33% pinanediol phenylboronate from pinanediol and potassium
phenyltrifluoroborate in the presence of potassium bifluoride under the usual
preparative conditions.
Acknowledgment. We thank the National Science Foun-
dation for support (grant CHE-0072788). The WSU NMR
Center equipment was supported by NIH grants RR0631401
and RR12948, NSF grants CHE-9115282 and DBI-9604689,
and a grant from the Murdock Charitable Trust.
(10) Lopez, R. M.; Fu, G. C. Tetrahedron 1997, 53, 16349-16353.
(11) (a) Brown, H. C.; Midland, M. M.; Levy, A. B. J. Am. Chem. Soc.
1972, 94, 2114-2115. (b) Brown, H. C.; Midland, M. M.; Levy, A. B. J.
Am. Chem. Soc. 1973, 95, 2394-2396. (c) Brown, H. C.; Midland, M. M.;
Levy, A. B.; Suzuki, A.; Sono, S.; Itoh, M. Tetrahedron 1987, 43, 4079-
4088. (d) Carboni, B.; Vaultier, M.; Carrie, R. Tetrahedron 1987, 43, 1799-
1810. (e) Carboni, B.; Vaultier, M.; Courgeon, T.; Carrie, R. Bull. Soc.
Chim. Fr. 1989, 844-849. (f) Brown, H. C.; Salunkhe, A. M.; Singaram,
B. J. Org. Chem. 1991, 56, 1170-1175. (g) Jego, J. M.; Carboni, B.;
Youssofi, A.; Vaultier, M. Synlett 1993, 595-597. (h) Brown, H. C.,
Salunkhe, A. M. Tetrahedron Lett. 1993, 34, 1265-1268.
Supporting Information Available: Preparative details
for trifluoroborates, secondary amines, compounds 9-14;
1
enantiomeric analysis of 14; H, 13C, 19F NMR spectra of
11 and of potassium 1-benzyloxy-2-phenylethyltrifluorobo-
rate. This material is available free of charge via the Internet
OL025973D
(12) (a) Suzuki, A.; Sono, S.; Itoh, M.; Brown, H. C.; Midland, M. M.
J. Am. Chem. Soc. 1971, 93, 4329-4330. (b) Evans, D. A.; Weber, A. E.
J. Am. Chem. Soc. 1987, 109, 7151-7157. (c) Salmon, A.; Carboni, B. J.
Organomet. Chem. 1998, 567, 31-37.
(13) Matteson, D. S.; Soundararajan, R. Organometallics 1995, 14,
4157-4166.
(14) Matteson, D. S.; Singh, R. P. J. Org. Chem. 2000, 65, 6650-6653.
Org. Lett., Vol. 4, No. 13, 2002
2155