C O M M U N I C A T I O N S
0.4 eV lower in energy; this energy difference is reflected in the
magnitudes of the respective E1/2 values determined for these
Acknowledgment. This work was supported through the
MRSEC Program of the National Science Foundation (DMR00-
79909) and the Office of Naval Research (N00014-98-1-0725).
M.J.T. and K.S. thank respectively the Camille and Henry Dreyfus
Foundation and the Japanese Society for the Promotion of Science
for research fellowships.
0/+
species in the anodic electrochemistry. Two σ-electron-withdrawing
perfluoroalkyl groups thus stabilize the FOs of meso-to-meso
ethyne-bridged tris[P(Zn)] compounds to an extent similar to which
these two substituents stabilize A-type PZn monomers relative to
their meso-aryl counterparts (Supporting Information);23-25 this
substituent-derived electronic stabilization counterbalances the
magnitude of HOMO destabilization that occurs concomitant with
meso-to-meso ethynyl conjugation of three PZn monomer units in
DDD. Second, in contrast to the case for DDD, note that the DAD
LUMO is localized exclusively upon the central [10,20-bis-
(perfluoroalkyl)porphinato]zinc(II) unit, with electron density dis-
tributed primarily upon the pyrrole CR, Câ, and N atoms, and the
meso carbon positions lying orthogonal to the highly conjugated
supermolecular axis. Figure 4 hence underscores the cardinal role
that D and A PZn fragment orbital energy differences play in fixing
the potentiometrically determined, conjugation-length-independent
radical cation- and anion-state energy levels evinced in Figure 3B
for the DA PZn oligomers. It is important to appreciate that, in
contrast to many simple conjugated organic building blocks, whose
low-lying excited states are described adequately by one-electron
transitions, extensive configuration interaction (CI) is necessary to
describe correctly porphyrin electronically excited states.26 While
absolute HOMO and LUMO energies and electron density spatial
Supporting Information Available: Detailed syntheses and char-
acterization data, tabulated optical and electrochemical data, along with
the frontier molecular orbitals determined for the DDD and DAD arrays
and a selection of benchmark (porphinato)zinc(II) species (PDF). This
References
(1) Tour, J. M. Chem. ReV. 1996, 96, 537-553.
(2) Roncali, J. Chem. ReV. 1997, 97, 173-205.
(3) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350-
1377.
(4) van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer,
E. W. Mater. Sci. Eng. 2001, 32, 1-40.
(5) Bohnen, A.; Ra¨der, H. J.; Mu¨llen, K. Synth. Met. 1992, 47, 37-63.
(6) Kiehl, A.; Eberhardt, A.; Adam, M.; Enkelmann, V.; Mu¨llen, K. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1588-1591.
(7) Meerholz, K.; Heinze, J. Electrochim. Acta 1996, 41, 1839-1854.
(8) Gebhardt, V.; Bacher, A.; Thelakkat, M.; Stalmach, U.; Meier, H.; Schmidt,
H.-W.; Haarer, D. Synth. Met. 1997, 90, 123-126.
(9) van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Meijer, E. W. Chem.
Eur. J. 1998, 4, 1235-1243.
(10) Jestin, I.; Fre´re, P.; Mercier, N.; Levillain, E.; Stievenard, D.; Roncali, J.
J. Am. Chem. Soc. 1998, 120, 8150-8158.
(11) Havinga, E. E.; ten Hoeve, W.; Wynberg, H. Synth. Met. 1993, 55-57,
299-306.
0/+
-/0
(12) Yamamoto, T.; Zhou, Z.-h.; Kanbara, T.; Shimura, M.; Kizu, K.;
Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B.-L.; Ooba, N.; Tomaru,
S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. J. Am. Chem. Soc.
1996, 118, 10389-10399.
distributions largely determine E1/2 - E1/2 values, large CI
guarantees orbital contributions from multiple high-lying filled and
low-lying empty levels in DA PZn array excited states; conse-
quently, globally delocalized S1 states are realized.
(13) Demanze, F.; Yassar, A.; Garnier, F. Macromolecules 1996, 29, 4267-
4273.
In sum, we show that the magnitudes of the potentiometric
HOMO-LUMO gap (Ep) and optical band gap (Eop) in conjugated
organic materials can be modulated independently. For these ethyne-
bridged porphyrin arrays, four factors appear crucial in achieving
such optoelectronic characteristics: (i) conjugated building blocks
that feature electronically excited states described by a multicon-
figurational wave function; (ii) an alternating electron-rich/electron-
poor structural motif, in which mismatched PZn fragment orbital
energies attenuate severely radical anion delocalization between
adjacent pigments along the highly conjugated oligomer axis; (iii)
σ-electron-withdrawing macrocycle substituents that suppress ef-
fectively progressive HOMO level destabilization that occurs
normally with increasing conjugation length; and (iv) strong
electronic coupling between these conjugated units. Notably,
because electrochemical responses obtained for DA porphyrin arrays
resemble those elucidated for their monomeric building blocks, this
work demonstrates that oxidative and reductive stability of highly
conjugated polymers need not be sacrificed in order to achieve
extensive excited-state electronic delocalization; the design strategy
outlined herein may thus prove valuable in the evolution of new
classes of redox-stable, low optical band gap processable organic
optical materials.
(14) Zhang, Q. T.; Tour, J. M. J. Am. Chem. Soc. 1997, 119, 5065-5066.
(15) Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1998, 120,
11808-11809.
(16) For other examples of highly conjugated porphyrin oligomers, see: (a)
Arnold, D. P.; Heath, G. A. J. Am. Chem. Soc. 1993, 115, 12197-12198.
(b) Wytko, J.; Berl, V.; McLaughlin, M.; Tykwinski, R. R.; Schreiber,
M.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M. HelV. Chim.
Acta 1998, 81, 1964-1977. (c) Taylor, P. N.; Huuskonen, J.; Rumbles,
G.; Aplin, R. T.; Williams, E.; Anderson, H. L. Chem. Commun. 1999,
909-910. (d) Tsuda, A.; Osuka, A. Science 2001, 293, 79-82.
(17) Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105-
1111.
(18) Lin, V. S.-Y.; Therien, M. J. Chem. Eur. J. 1995, 1, 645-651.
(19) Angiolillo, P. J.; Lin, V. S.-Y.; Vanderkooi, J. M.; Therien, M. J. J. Am.
Chem. Soc. 1995, 117, 12514-12527.
(20) Kumble, R.; Palese, S.; Lin, V. S.-Y.; Therien, M. J.; Hochstrasser, R.
M. J. Am. Chem. Soc. 1998, 120, 11489-11498.
(21) Shediac, R.; Gray, M. H. B.; Uyeda, H. T.; Johnson, R. C.; Hupp, J. T.;
Angiolillo, P. J.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017-
7033.
(22) (a) Fletcher, J. T.; Therien, M. J. Inorg. Chem. 2002, 41, 331-341. (b)
Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 4298-4311.
(23) DiMagno, S. G.; Williams, R. A.; Therien, M. J. J. Org. Chem. 1994, 59,
6943-6948.
(24) Goll, J. G.; Moore, K. T.; Ghosh, A.; Therien, M. J. J. Am. Chem. Soc.
1996, 118, 8344-8354.
(25) Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999,
121, 5196-5209.
(26) Gouterman, M. In The Porphyrins; Dolphin, D., Ed.; Academic Press:
London, 1978; Vol. III, pp 1-165.
JA0203925
9
8552 J. AM. CHEM. SOC. VOL. 124, NO. 29, 2002