Arch. Pharm. Pharm. Med. Chem. 2002, 335, 7–14
Synthesis of Imidazo[1,2-a]phthalazines 13
[6] H. J. Böhm, J. Comput. Aided Mol. Des. 1994, 8, 243–256.
cipitate formed was filtered and washed with acetonitrile. The
crude product was purified chromatographically on a silica gel
column and eluted with ethyl acetate/hexane (10/90 v/v) to give
5a–c.
[7] H. J. Böhm, J. Comput. Aided Mol. Des. 1998, 12,
309–323.
[8] I. Muegge,Y. C. Martin, J. Med. Chem. 1999, 42, 791–804.
Palladium catalyst
[9] P.S.Charifson, J.J.Corkery, M.A.Murcko, W.P.Walters, J.
Tetrakis(triphenylphosphine)palladium(0) was prepared ac-
cording to the procedure of Coulson [34].
Med. Chem. 1999, 42, 5100–5109.
[10] A. Cuenda, J. Rouse, Y. N. Doza, R. Meier, P. Cohen, T. F.
Gallagher, P. R. Young, J. C. Lee, FEBS Lett. 1995, 364,
229–233.
6-Chloro-2,3-diarylimidazo[2,1-a]phthalazine 6a–f and 6-ami-
no-2,3-diarylimidazo[2,1-a]phthalazine 6g–i
To a mixture of 3-iodoimidazophtalazine 5a–c (0.5 mmol) in
4 mL dimethoxyethane (DME), under nitrogen, Pd(PPh3)4
(0.025 mmol), aryl boronic acid or pyridine-3-boronic acid 1,3-
propanediol cyclic ester (0.55 mmol), and 2 mL of 4 N aqueous
sodium hydroxide solution were added. The reaction mixture
was heated under reflux for 8 h. After cooling, the mixture was
poured into a brine solution (100 mL) and then extracted with
dichloromethane. The organic layers were dried over an-
hydrous magnesium sulfate and evaporated to dryness under
vacuo. The crude product was separated by chromatography
on a flash silica gel column and eluted with dichloromethane/
hexane (30/70, v/v) to give 6a–i.
[11] T. F. Gallagher, S. M. Fier-Thompson, R. S. Garigipati, M.
E. Sorenson, J. M. Smietana, D. Lee, P. E. Bender, J. C.
Lee, J.T. Laydon, D. E. Griswold, M. C. Chabot-Fletcher, J.
J. Breton, J. L. Adams, Bioorg. Med. Chem. Lett. 1995, 5,
1171–1176.
[12] G. B. Barlin, Aust. J. Chem. 1986, 39, 1803–1809.
[13] D. Catarzi, L. Cecchi, V. Colotta, G. Conti, F. Melani, G.
Filacchioni, C. Martini, L. Giusti, A. Lucacchini, Farmaco
1993, 48, 447–457.
[14] C.Enguehard, J.L.Renou,V.Collot, M.Hervet, S.Rault, A.
Gueiffier, J. Org. Chem. 2000, 65, 6572–6575.
Molecular modeling
[15] C. Hamdouchi, J. de Blas, M. del Prado, J. Gruber, B. A.
The calculations and simulations were performed on an Indigo
2 SGI workstation using the software modules Builder, Ampac/
Mopac, Homology and LUDI in the MSI/Biosym package (vers.
insightII 98.0).The structure of the p38 enzyme comes from the
Protein Data Bank. Hydrogen atoms were added automatically
using the Builder module with the pH set to the physiological
value of 7.4. Local minimum conformers of evaluated struc-
tures were obtained by full energy minimization using AM1 cal-
culation with Mopac hessian.
Heinz, L. Vance, J. Med. Chem. 1999, 42, 50–59.
[16] N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 1981,
11, 513–519.
[17] V. Collot, P. Dallemagne, P. R. Bovy, S. Rault, Tetrahedron
1999, 55, 6917–6922.
[18] B.Stein, M.X.Yang, D.B.Young, R.Janknecht,T.Hunter, B.
W. Murray, M. S. Barbosa, J. Biol. Chem. 1997, 272,
19509–19517.
The coordinate of the centroid of the inhibitor SB203580 in the
protein-ligand complex (1A9U)a [20] was taken as the center of
the investigation in the p38 enzyme (1P38)a.The rms deviation
between these two proteins evaluated by the homology module
was 0.387 Å.Interaction sites were calculated within a radius of
6.0 Å of several points in this region.The fit was achieved with a
maximum rms deviation of 0.6 Å from the interaction sites for
the structure.
[19] S.Kumar, P.C.McDonnell, R.J.Gum, A.T.Hand, J.C.Lee,
P. R.Young, Biochem. Biophys. Res. Commun. 1997, 235,
533–538.
[20] Z.Wang, B.J.Canagarajah, J.C.Boehm, S.Kassisa, M.H.
Cobb, P. R. Young, S. Abdel-Meguid, J. L. Adams, E. J.
Goldsmith, Structure 1998, 6, 1117–1128.
[21] Z.Wang, P.C.Harkins, R.J.Ulevitch, J.Han, M.H.Cobb, E.
J. Goldsmith, Proc. Natl. Acad. Sci. USA 1997, 94,
2327–2332.
a access four-character code in Brookhaven Protein Databank
(PDB).
[22] L. Tong, S. Pav, D. M. White, S. Rogers, K. M. Crane, C. L.
Cywin, M. L. Brown, C. A. Pargellis, Nat. Struct. Biol. 1997,
4, 311–316.
[23] K. P. Wilson, P. G. McCaffrey, K. Hsiao, S. Pazhanisamy,
V. Galullo, G.W.Bemis, M.J.Fitzgibbon, P.R.Caron, M.A.
Murcko, M. S. Su, Chem. Biol. 1997, 4, 423–431.
References
[24] P. R.Young, M. M. McLaughlin, S. Kumar, S. Kassis, M. L.
Doyle, D. McNulty, T. F. Gallagher, S. Fisher, P. C. McDon-
nell, S.A.Carr, M.J.Huddleston, G.Seibel, T.G.Porter, G.
P. Livi, J. L. Adams, J. C. Lee, J. Biol. Chem. 1997, 272,
12116–12121.
[1] M. J. Robinson, M. H. Cobb, Curr. Opin. Cell Biol. 1997, 9,
180–186.
[2] J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S.
Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys,
S. W. Landvatter, Nature 1994, 372, 739–746.
[25] B. Frantz, T. Klatt, M. Pang, J. Parsons, A. Rolando, H.Wil-
liams, M.J.Tocci, S.J.O’Keefe, E.A.O’Neill, Biochemistry
1998, 37, 13846–13853.
[3] M. Suzuki, T. Tetsuka, S.Yoshida, N. Watanabe, M. Koba-
yashi, N. Matsui, T. Okamoto, FEBS Lett. 2000, 465,
23–27.
[26] S. E. de Laszlo, D.Visco, L. Agarwal, L. Chang, J. Chin, G.
Croft, A. Forsyth, D. Fletcher, B. Frantz, C. Hacker, W.
Hanlon, C.Harper, M.Kostura, B.Li, S.Luell, M.MacCoss,
[4] H. J. Böhm, J. Comput. Aided Mol. Des. 1992, 6, 593–606.
[5] H. J. Böhm, J. Comput. Aided Mol. Des. 1992, 6, 61–78.