Finally it is worthy to note that the O-silyl ketene N,O acetal
8 reacted under the same conditions as 2a–f to give in 75% yield
the corresponding homodihydronicotinamide 9. However, in
contrast to 5a, no lactonisation took place upon its treatment
with iodine.
This new method is being applied to the synthesis of chiral
dihydropyridines for the enantioselective reduction of carbene
complexes and further functionalizations of the lactones are in
progress.
Notes and references
‡ Spectral data for 5a; dH (200 MHz) 10.65 (s, br, 1H), 6.93 and 6.79 (d, J
7.4, 2H), 4.79 (s, br, 2H), 3.78 (s, 3H), 3.36 (s, br, 1H), 1.13 (s, 6H); dC (50
MHz) 183.62 (CO2H), 151.92 (COOMe), 124.94, 124.62, 106.00, 105.70
(CNC), 53.56 (OMe), 47.17 (CMe2), 40.18 (CH), 21.33 (2 Me).
§ For 6a; dH (400 MHz) 7.28, 6.92 (d, J 6, 1H), 6.40, 6.25 (s, 1H), 5.16 (t,
J 6.8, 1H), 5.06, 5.04 (s, 1H), 3.85 (s, 3H), 2.41, 2.39 (s, 1H), 1.45 (s, 3H),
1.35 (s, 3H), dC (100 MHz) 173.88 (CO), 152.67, 152.50 (CO), 121.79
(CNC), 105.42, 104.99 (CNC), 83.18, 82.69 (C(N)O), 54.08 (OCH3), 46.66
(Cq), 44.51, 44.37 (CH), 27.26, 26.12 (Me), 13.64 (C-I).
Fig. 1 Molecular view (ORTEP3)15 with the atom labelling scheme.
Ellipsoids are drawn at 50% probability. Selected bond distances (Å) and
bond angles (°): C(1)–I(1) 2.148(7), C(1)–C(4) 1.511(10), C(4)–C(3)
1.493(10), C(3)–C(2) 1.317(11), C(2)–N(1) 1.438(9), N(1)–C(7) 1.441(9),
C(7)–O(1) 1.457(10), C(7)–C(1) 1.510(10), O(1)–C(6) 1.360(9), C(6)–
O(61) 1.181(10), C(6)–C(5) 1.530(9), C(5)–C(4) 1.558(10), N(1)–C(11)
1.370(9), C(11)–O(11) 1.184(9), C(11)–O(12) 1.365(9), O(12)–C(12)
1.439(9); C(4)–C(1)–C(7) 108.4(6), C(4)–C(1)–I(1) 114.1(5), C(7)–C(1)–
I(1) 109.3(5), C(1)–C(4)–C(3) 110.2(6), C(4)–C(3)–C(2) 122.4(7), C(3)–
C(2)–N(1) 122.1, N(1)–C(11)–O(11) 125.3(7), N(1)–C(11)–O(12)
109.8(6), O(11)–C(11)–O(12) 125.0(7).
¶ Crystal data for 6b: [C15H14INO4]; Mr = 399.17; monoclinic; space
group P21/n; a = 6.1448(5), b
92.97(1)°, V = 1455.3(2) Å3, Z = 4, rcalcd. = 1.822 Mg m23, m = 2.216
mm21, numerical absorption correction applied, Tmin = 0.5938, Tmax
= 12.505(1), c = 18.965(1) Å, b =
=
0.6860; MoKa radiation; T
= 180 K; w/o scans (Oxford-Diffraction
orientation of the carbon–iodine bond with respect to the new
carbon-oxygen bond.
Xcalibur);12 2qmax = 50.04°; reflections collected/unique used, 7143/2514
(Rint = 0.0889) 2119 [I > 2s(I)]; parameters refined, 191; R/wR2[(I >
This easy two-step diaddition reaction prompted us to attempt
the one pot transformation of pyridine into the lactone 6a. Thus,
treatment of the mixture of pyridine and bis(TMS)ketene acetals
2a first with methylchloroformate, at room temperature for one
hour, then with an excess of iodine, followed by stirring
overnight, led to the expected lactones 6a in a 90% yield.
A further possibility existed for the transformation of the
acids 5 into lactones: the oxidative cyclization via the
epoxidation of one of the double bonds of the dihydropyridines
5.4,5
2s(I)] = 0.0660/0.1593; GOF = 1.123; D/smax = 0.006; [Dr]min/[Dr]max
,
21.31/1.72. Structure solution and refinement with the programs SIR9713
and SHELXL97.14 CCDC 178733. See http://www.rsc.org/suppdata/cc/b2/
b201780f/ for electronic files in .cif or other electronic format.
∑ For 7a; dH 6.94 (d, J 8.2, 1H), 6.81 (d, J 8.2, 1H), 6.34, 6.18 (s, br, 1H),
5.10, 5.02 (d, J 8.2), 4.79 (s, br, 1H), 3.84 (s, 3H), 2.36, 2.38 (s, 1H), 1.42
(s, 3H), 1.37 (s, 3H); dC 152.83, 152.70 (CO), 121.84 (CNC), 103.93, 103.52
(CNC), 81.21, 80.83 (C(N)O), 51.04 (OCH3), 46.17 (CMe2), 45.60 (COH),
42.60, 42.52 (CH), 27.17 (Me), 26.02( Me).
1 H. Rudler, V. Comte, E. Garrier, M. Bellassoued, E. Chelain and J.
Vaissermann, J. Organomet. Chem., 2001, 621, 284–298.
2 M. Bellassoued, E. Chelain, J. Collot, H. Rudler and J. Vaissermann,
Chem. Commun., 1999, 187.
3 H. Rudler, P. Harris, A. Parlier, F. Cantagrel, B. Denise, M. Bellassoued
and J. Vaissermann, J. Organomet. Chem., 2001, 624, 186–202.
4 H. Rudler, A. Parlier, F. Cantagrel and M. Bellassoued, Chem.
Commun., 2000, 771–772.
5 H. Rudler, A. Parlier, V. Certal and J. Vaissermann, Angew. Chem., Int.
Ed., 2000, 39, 3417–3419.
6 H. Rudler, A. Parlier, B. Martín-Vaca, E. Garrier and J. Vaissermann,
Chem. Commun., 1999, 1439–1440.
7 H. Rudler, A. Parlier, T. Durand-Réville, B. Martín-Vaca, M. Audouin,
E. Garrier, V. Certal and J. Vaissermann, Tetrahedron, 2000, 56,
5001–5027.
8 T. Itoh, M. Miyazaki, K. Nagata and A. Ohsawa, Heterocycles, 1997,
46, 83.
9 A. R. Katritzky, S. Zhang, T. Kurz and M. Wang, Org. Lett., 2001, 3,
Thus, when the same mixture originating from the monoaddi-
tion of the ketene acetals 2a to pyridine was subjected to a m-
chloroperbenzoic acid oxidation, at room temperature, a new
compounds 7a was isolated after silica gel chromatography in
75% yield, as a solid, mp 130° C. Its NMR spectra∑ confirmed
the presence of two rotamers, the 13C NMR spectrum of 7a
differing from the spectrum of 6a by the shift of one signal from
d 13.6 (C-I) to d 45.6, confirming the formation, upon
cyclization, of a secondary alcohol.
2807–2809.
10 D. L. Comins, M. J. Sandelier and T. A. Grillo, J. Org. Chem., 2001, 66,
6829–6832.
11 A. Krauze, S. Germane, O. Eberlins, I. Sturms, V. Klusa and G. Duburs,
Eur. J. Med. Chem., 1999, 34, 301–310.
12 CRYSALIS, V.169, Oxford-Diffraction, Oxford, 2001.
13 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo,
A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagn, J. Appl.
Cryst., 1999, 32, 115–119.
14 G. M. Sheldrick, SHELX 97, Programs for Crystal Structure Analysis
(Release 97-2) 1998, Institüt für Anorganische Chemie der Universität,
Tammanstrasse 4, D-3400 Göttingen, Germany.
15 M. N. Burnett and C. K. Johnson, ORTEP-III – Report ORNL-6895.
1996 Oak Ridge National Laboratory, Oak Ridge, Tennessee; L. J.
Farrugia, ORTEP3 for Windows, J. Appl. Crystallogr., 1997, 30, 565.
CHEM. COMMUN., 2002, 940–941
941