10.1002/anie.202010492
Angewandte Chemie International Edition
COMMUNICATION
1881–1886; d) A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107,
1066–1096; e) F. Badudri, G. M. Farinola, F. Naso, R. Ragni, Chem.
Commun. 2007, 1003–1022; f) S. Preshlock, M. Tredwell, V.
Gouverneur, Chem. Rev. 2016, 116, 719–766.
displayed higher reactivity than electron-rich one, and therefore
provides positive evidance that this defluorinative hydroarylation
might undergo a SNAr mechanism.[8k-m] The relationship of
relative stoichiometry of ligand and copper catalyst was also
investigated. As shown in Scheme 2D, the initial reaction rate
increased with the increasing of [L], and initial reaction rate
culminated when [L]/[Cu] ≈ 1. On the basis of this result, we
deduced that active catalyst incorporates only one ligand. Based
[2]
For selected reviews, see: a) T. Liang, C. N. Neumann, T. Ritter, Angew.
Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013, 125, 8372–
8423; b) A. Lin, C. B. Huehls, J. Yang, Org. Chem. Front. 2014, 1, 434–
438; c) Y. Li, G-S. Li, X.-S. Wang, Adv. Synth. Catal. 2014, 356, 871; d)
R. Szpera, D. F. J. Moseley, L. B. Smith, A. J. Sterling, V. Gouverneur,
Angew. Chem. Int. Ed. 2019, 58, 14824–14848; Angew. Chem. 2019,
131, 14966–14991.
on these experimental results and previous reports,[8k-m]
a
possible mechanism was described in Scheme 3. Initially, the
combination of Cu(C8H15O2)2, dppbz, and silane would in-situ
generate dppbz-ligated CuH catalyst. Then, a regioselective
insertion of CuH catalyst into alkene could provide
[3]
[4]
a) J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, Chem. Rev. 1994,
94, 373–431; b) T. Braun, R. N. Perutz, Chem. Commun. 2002, 23,
2749–2757; c) W. D. Jones, Dalton Trans. 2003, 3991–3995; d) H. Amii,
K. Uneyama, Chem. Rev. 2009, 109, 2119–2183; e) T. Ahrens, J.
Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931–972; f) O.
Eisenstein, J. Milani, R. N. Perutz, Chem. Rev. 2017, 117, 8710–8753.
For reviews, see: a) G. Meier, T. Braun, Angew. Chem. Int. Ed. 2009, 48,
1546–1548; Angew. Chem. 2009, 121, 1575–1577; b) E. Clot, O.
Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz,
Acc. Chem. Res. 2011, 44, 333–348; c) M. F. Kuehnel, D. Lentz, T.
Braun, Angew. Chem. Int. Ed. 2013, 52, 3328–3348; Angew. Chem.
2013, 125, 3412–3433; For selected examples, see: d) M. Aizenberg, D.
Milstein, Science. 1994, 265, 359–361; e) M. Aizenberg, D. Milstein, J.
Am. Chem. Soc. 1995, 117, 8674–8675; f) T. Schaub, P. Fischer, A.
Steffen, T. Braun, U. Radius, A. Mix, J. Am. Chem. Soc. 2008, 130,
9304–9317; g) N. Y. Adonin, V. F. Starichenko, J. Fluorine. Chem. 2000,
101, 65–67; h) H. Lv, J.-H. Zhan, Y.-B. Cai, Y. Yu, B. Wang, J.-L.
Zhang, J. Am. Chem. Soc. 2012, 134, 16216–16227; i) P. Fischer, K.
Götz, A. Eichhorn, U. Radius, Organometallics. 2012, 31, 1374–1383; j)
J.-H. Zhan, H. B. Lv, Y. Yu, J.-L. Zhang, Adv. Synth. Catal. 2012, 354,
1529–1541; k) H. B. Lv, Y.-B. Cai, J.-L. Zhang, Angew. Chem. Int. Ed.
2013, 52, 3203–3207; Angew. Chem. 2013, 125, 3285–3289; l) S. M.
Senaweera, A. Singh, J. D. Weaver, J. Am. Chem. Soc. 2014, 136,
3002–3005; m) J. Lu, N. S. Khetrapal, J. A. Johnson, X. C. Zeng, J.
Zhang, J. Am. Chem. Soc. 2016, 138, 15805–15808; n) M. K. Cybulski,
J. E. Nicholls, J. P. Lowe, M. F. Mahon, M. K. Whittlesey,
Organometallics. 2017, 36, 2308–2316.
organocuprate intermediate I, followed by
a nucleophilic
substitution to polyfluoroarene 2 that could directly furnish target
product 3 and simultaneously release dppbz-ligated CuF.[8k-m]
Finally, a metathesis reaction between LCuF and silane could
regenerate CuH catalyst.
Scheme 3. Proposed mechanism for the defluorinative hydroarylation of
alkenes
[5] a) T. Braun, M. Ahijado Salomon, K. Altenhöner, M. Teltewskoi, S.
Hinze,Angew. Chem. Int. Ed. 2009, 48, 1818–1822; Angew. Chem.
2009, 121, 1850–1854; b) M. Teltewskoi, J. A. Panetier, S. A.
Macgregor, T. Braun, Angew. Chem. Int. Ed. 2010, 49, 3947–3951;
Angew. Chem. 2010, 122, 4039–4043; c) W. H. Guo, Q. Q. Min, J. W.
Gu, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 9075–9078; Angew.
Chem. 2015, 127, 9203–9206; d) R. J. Lindup, T. B. Marder, R. N.
Perutz, A. C. Whitwood, Chem. Commun. 2007, 3664–3666; e) X. W.
Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc. 2015, 137,
12470–12473; f) T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am.
Chem. Soc. 2015, 137, 14313–14318; g) S. I. Kalläne, M. Teltwskoi, T.
Braun, B. Braun, Organometallics. 2015, 34, 1156–1169; h) J. Zhou, M.
W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A.
Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc. 2016, 138,
5250–5253; i) Y.-M. Tian, X.-N. Guo, M. W. Kuntze-Fechner, I.
Krummenacher, H. Braunschweig, U. Radius, A. Steffen, T. B. Marder,
J. Am. Chem. Soc. 2018, 140, 17612–17623.
In summary, we have developed a novel copper-catalyzed
defluorinative hydroarylation of alkenes with polyfluoroarenes,
providing an array of synthetic important fluorinated arenes with
high efficiency. This method not only exhibits good substrate
scope, functional group compatibility and generally excellent
level of regioselectivity, but also offers a straightforward, mild,
and alternative approach in the field of C–F bond
functionalization via readily available alkenes as the latent
preformed organometallics surrogates. Further detailed
mechanistic studies and enantioselective version are in progress
in our laboratory.
Acknowledgements
[6]
Ni-catalyzed arylation, see: a) N. Yoshikai, H. Mashima, E. Nakamura, J.
Am. Chem. Soc. 2005, 127, 17978–17979; b) T. Saeki, Y. Takashima,
K. Tamao, Synlett. 2005, 11, 1771–1774; c) T. Schaub, M. Backes, U.
Radius, J. Am. Chem. Soc. 2006, 128, 15964–15965; d) A. D. Sun, J. A.
Love, Org. Lett. 2011, 13, 2750–2753; e) M. Tobisu, T. Xu, T.
Shimasaki, N. Chatani, J. Am. Chem. Soc. 2011, 133, 19505–19511; f)
Y. Nakamura, N. Yoshikai, L. Ilies, E. Nakamura, Org. Lett. 2012, 14,
3316–3319; g) M. Ohashi, H. Saijo, M. Shibata, S. Ogoshi, Eur. J. Org.
Chem. 2013, 2013, 443–447; h) H. Saijo, H. Sakaguchi, M. Ohashi, S.
Ogoshi, Organometallics. 2014, 33, 3669–3672; i) J. Zhou, J. H. J.
Berthel, M. W. Kuntze-Fechner, A. Friedrich, T. B. Marder, U. Radius,
J. Org. Chem. 2016, 81, 5789–5794; j) F. Zhu, Z.-X. Wang, J. Org.
Chem. 2014, 79, 4285–4292. Example on Ni-catalyzed C–H activation
We acknowledge the NSFC (21672033, 21801039 , and
21831002), Jilin Educational Committee (JJKH20190269KJ), the
Fundamental Research Funds for the Central Universities, and
Ten Thousand Talents Program for generous financial support.
Keywords: defluorinative hydroarylation •copper catalysis •
alkenes • polyfluoroarenes
[1]
For selected reviews, see: a) T. Hiyama, Organofluorine Compounds,
Chemistry and Applications, Springer-Verlag: Berlin, 2000; b) S. Purser,
P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37,
320–330; c) K. Müller, C. Faeh, F. Diederich, Science. 2007, 317,
4
This article is protected by copyright. All rights reserved.