Y. Wu et al. / Bioorg. Med. Chem. Lett. 12 (2002) 1629–1632
1631
treatment of 15 with dimethyl diazophosphonate affor-
ded alkyne 16.13 The remaining carbon atoms of the
side chain were introduced upon reaction of lithiated 16
with a ketone (Me2CO for WY 722 and WY 906,
(CF3)2CO for WY 718 and CD 578 and Et2CO for WY
727). Deprotection and Swern oxidation then led to C-8
aldehydes 17.
for the more potent fluorinated analogues; especially
WY 718 and CD 578 with a 26,27-hexafluoro-23-yne
side chain. The latter, a 19-nor-analogue, displays high
ratios of cell antiproliferation activities versus calcemic
effect. Further details of the biological activities and
considerations obtained fromcomparison with other
D-ring analogues will be published elsewhere (Table 1).
Finally, construction of the title compounds 3 and 4
involved Lythgoe coupling of aldehydes 11, 12 and 17
with A-ring phosphine oxides 6a8 and 6b7a followed by
deprotection of the hydroxy functions (Scheme 2).
Acknowledgements
We thank the ‘FWO’, the ‘Ministerie voor Wetenschaps-
beleid’ and Theramex S.A. for financial support.
The coupling was performed on D-ring side chain frag-
ments possessing a free 25-hydroxy function therefore
an excess of 6a,b (4–5 equiv) was used; the A-ring
phosphine oxide could be recuperated. The combined
yield of this two-step sequence was higher (65–80%)
than for the alternative approach involving TES
protection (40–50%).
References and Notes
1. Bouillon, R.; Van Baelen, H. Saudi Med. J. 1989, 10, 260.
2. DeLuca, H. F.; Burmester, J.; Darwish, H.; Krisinger, J. In
Comprehensive Medicinal Chemistry; Pergamon: New York,
1990; vol. 3, p 1129.
3. Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr.
Rev. 1995, 16, 200.
The affinity to the pig intestinal mucosa vitamin D
receptor (VDR) was evaluated as described pre-
viously.14 The relative affinity of the analogues was cal-
culated fromtheir concentration needed to displace
50% of [3H] 1a,25(OH)2D3 fromits receptor compared
with the activity of 1 (assigned a value of 100%). The
affinity for VDR varied between 40 and 80% compared
to 1.
4. (a) Bouillon, R.; De Clercq, P.; Pirson, P.; Vandewalle, M.
Novel structural analogues of vitamin D; patent PCT/EP
93.202037.3; priority date 09–07–1993 (b) Sabbe, K.; D’Halle-
weyn, C.; De Clercq, P.; Vandewalle, M.; Bouillon, R.; Ver-
stuyf, A. Bioorg. Med. Chem. Lett. 1996, 6, 1697. (c) Gui-
Dong, Z.; Yongjun, C.; Xiaoming, Z.; Vandewalle, M.; De
Clercq, P.; Bouillon, R.; Verstuyf, A. Bioorg. Med. Chem.
Lett. 1996, 6, 1703. (d) Yong-Yung, C.; De Clercq, P.; Van-
dewalle, M. Tetrahedron Lett. 1996, 52, 9361. (e) Wu, Y.; Shi,
L.; D’Halleweyn, C.; Van Haver, D.; De Clercq, P.; Vande-
walle, M. Bioorg. Med. Chem. Lett. 1997, 7, 928. (f) Linclau,
B.; De Clercq, P.; Bouillon, R.; Verstuyf, A.; Vandewalle, M.
Bioorg. Med. Chem. Lett. 1997, 11, 1461 and 1465. (g) Sas, B.;
De Clercq, P.; Vandewalle, M. Synlett 1997, 10, 1167. (h)
Verstuyf, A.; Verlinden, L.; Van Baelen, H.; Sabbe, K.;
D’Hallewyn, C.; De Clercq, P.; Vandewalle, M.; Bouillon, R.
J. Bone Miner. Res. 1998, 13, 549. (i) Zhou, X.; Zhu, G.-D.;
Van Haver, D.; Vandewalle, M.; De Clercq, P. J.; Verstuyf,
A.; Bouillon, R. J. Med. Chem. 1999, 42, 3539. (j) Verstuyf,
A.; Verlinden, L.; Van Etten, E.; Shi, L.; Wu, Y.; D’Halle-
weyn, C.; Van Haver, D.; Zhu, G.-D.; Chen, Y.-J.; Zhou, X.;
Haussler, M. R.; De Clercq, P.; Vandewalle, M.; Van Baelen,
H.; Mathieu, C.; Bouillon, R. J. Bone Miner. Res. 2000, 2, 237;
for an analogous approach, see: Kutner, A.; Zhao, H.; Fitak,
H.; Wilson, S. R. Bioorg. Chem. 1995, 23, 22. Hilpert, H.;
Wirz, B. Tetrahedron 2001, 57, 681.
The in vivo calcemic effects were tested in vitamin D-
replete normal NMRI mice by daily intraperitoneal
injections of 1a,25(OH)2D3 1, the analogues or the sol-
vent during 7 consecutive days, using serumcalcium
concentration as parameter. The biological evaluation
was determined in vitro on different cell lines (HL 60,
MCF-7, MG 63, keratinocytes). All results are the mean
of at least 3 experiments and are expressed as percen-
tage activity (at 50% dose response) in comparison with
1 (=100% activity). All analogues were 10 to more than
100-fold less calcemic than 1a,25(OH)2D3. The
antiproliferative activity was comparable to 1, except
Table 1. Biological activities
5. (a) Okamura, W. H.; Midland, M. M.; Hammond, M. W.;
Rahman, N. A.; Dormanen, M. C.; Nemere, I.; Norman,
A. W. J. Steroid Biochem. Mol. Biol. 1995, 53, 603. (b) Van
Haver, D.; De Clercq, P. Bioorg. Med. Chem. Lett. 1998, 8,
1029.
Compd
In vitro studies
In vivo studies
Ca serum
VDR HL60 MG-63 MCF-7 Keratinocytes
1
KS 699
WY 838 40
KS 703
WY 836 75
WY 619 80 150
WY 625 75
WY 621 80
WY 624 40
WY 903 70
WY 722
WY 906 60
100 100
100
60
100
80
100
40
10
90
100
<1
0.25
5
0.25
10
30
40
9
6. Rochel, N.; Wurtz, J. M.; Mitscher, A.; Klaholz, B.;
Moras, D. Mol. Cell 2000, 173.
40
30
80 100
85
200
80
200
50
250
100
1250
90
7. (a) Perlman, K. L.; Sicinski, H. K.; DeLuca, H. F. Tetra-
hedron Lett. 1990, 31, 1823. (b) Bouillon, R.; Sarandeses, L. A.;
Allewaert, K.; Zhao, J.; Mascarenas, J. L.; Mourino, A.;
Vrielynck, S.; De Clercq, P.; Vandewalle, M. Bone Miner. Res.
1993, 8, 1009.
8. Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho,
A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 3098, 51.
9. Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 49, 4833.
10. Roush, W. R.; Russo-Rodrigues, S. J. Org. Chem. 1985,
50, 5465.
40
750
1350
300
200
60
400
85
3500
4500
90
80
50
20
20
3
13
50
12
375
70
<0.1
0.5
0.1
0.25
1
10
9
100
60
50
350
20
150
70
3500
2000
150
WY 718 80 215
CD 578 100 300
WY 727 70
1
1
90
11. Tanner, D.; Somfai, P. Tetrahedron 1987, 43, 4395.