LETTER
Concise Route to the Key Intermediate of (+)-Vernolepin
1067
via the hydroxy-ester. Transformation of the lactone 20
into the orthoester 21 was readily carried out under the
same conditions as those reported in the Danishefsky syn-
thesis.3,4d Finally, the ester 21 was treated with potassium
carbonate to give the target molecule, the key intermedi-
References
(1) (a) Kupchan, S. M.; Hemingway, R.; Karin, A. J. Am. Chem.
Soc. 1968, 90, 3596. (b) Kupchan, S. M.; Hemingway, R.;
Werner, D.; Karin, A. J. Org. Chem. Soc. 1969, 34, 3903.
(2) (a) Grieco, P. A.; Nishizawa, M.; Oguri, T.; Burke, S. D.;
Marinovic, N. J. Am. Chem. Soc. 1976, 98, 1612.
(b) Grieco, P. A.; Nishizawa, M.; Oguri, T.; Burke, S. D.;
Marinovic, N. J. Am. Chem. Soc. 1977, 99, 5773.
(3) (a) Danishefsky, S.; Kitahara, T.; Schuda, P. F.; Etheredge,
S. J. J. Am. Chem. Soc. 1976, 98, 3028. (b) Danishefsky, S.;
Kitahara, T.; Schuda, P. F.; Etheredge, S. J. J. Am. Chem.
Soc. 1977, 99, 6066. (c) Danishefsky, S.; Kitahara, T.;
Schuda, P. F.; Etheredge, S. J. J. Am. Chem. Soc. 1977, 99,
6066.
(4) For racemic syntheses, see: (a) Kieczykowski, G. R.;
Quesada, M. L.; Schlessinger, R. H. J. Am. Chem. Soc. 1978,
100, 1938. (b) Kieczykowski, G. R.; Quesada, M. L.;
Schlessinger, R. H. J. Am. Chem. Soc. 1980, 102, 782.
(c) Isobe, M.; Iio, M.; Kawai, T.; Goto, T. J. Am. Chem. Soc.
1978, 100, 1940. (d) Iio, M.; Isobe, M.; Kawai, T.; Goto, T.
J. Am. Chem. Soc. 1979, 101, 6076. (e) Zutterman, F.; De
Wilde, H.; Mijngheer, R.; De Clercq, P.; Vandewalle, M.
Tetrahedron 1979, 35, 2389. (f) Wakamatsu, T.; Hara, H.;
Ban, Y. J. Org. Chem. 1985, 50, 10.
27
ate 1, [ ]D –157.6 (c 1.1, CHCl3), of (+)-vernolepin by
removal of the trifluoroacetyl moiety. The overall yield of
the key intermediate (-)-1 from the ketone (+)-5 was 22%
in nine steps, and, thus, 15% in twelve steps from the
chiral building block (–)-2. Since the route to racemic ver-
nolepin from the racemic 1 employing the Danishefsky
synthesis3 has been established,4d the present acquisition
of the optically active key intermediate (–)-1 constitutes a
formal synthesis of (+)-vernolepin (Scheme 4).
In summary, we have found a new utilization for the chiral
building block we developed by converting it enantiose-
lectively into the key intermediate of the sesquiterpene
(+)-vernolepin. The present example demonstrates not
only the potential of the chiral building block owing to its
inherent stereochemical and chemical nature, but also
shows a facile entry into the physiologically and structur-
ally interesting natural product.
(5) For a enantiocontrolled synthesis, see: (a) Kondo, K.;
Sodeoka, M.; Mori, M.; Shibasaki, M. Tetrahedron Lett.
1993, 34, 4219. (b) Ohrai, K.; Kondo, K.; Sodeoka, M.;
Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 11737.
(6) Nagata, H.; Miyazawa, N.; Ogasawara, K. Org. Lett. 2001,
3, 1737.
Acknowledgement
We are grateful to the Ministry of Education, Culture, Sports,
Science and Technology, Japan for support of this research.
(7) Hanada, K.; Miyazawa, N.; Naagata, H.; Ogasawara, K.
Synlett 2002, 125.
(8) Miyazawa, N.; Tosaka, A.; Hanada, K.; Ogasawara, K. to be
published.
O
O
O
BnO
O
iii
ii
i
(+)-5
MeO
OBn
OBn
OBn
MeO2C
O–
14
O
OH
H
13
12
15
OCOCF3
R1
R2
O
BnO
MeO2C
vi
BnO
iv
BnO
v
MeO2C
MeO2C
H
H
H
17:R1= OH, R2= H
18:R1= H, R2= OH
19
16
OCOCF3
OCOCF3
OH
O
O
O
ix
viii
O
O
vii
O
O
O
H
H
H
(–)-1
21
20
Scheme 4 Reagents and conditions: i) concd HCl–THF (1:4) (90%). ii) PCC, CH2Cl2 (84%). iii) NaOMe, MeOH, 0 °C (99%). iv) IBX,
p-TsOH (cat.), DMSO, toluene, 65 °C (78%). v) NaBH4–CeCl3–7H2O, –78 °C (17: 65% and 18: 17%). vi) (CF3CO)2O, pyridine, THF (100%).
vii) DDQ, (CH2Cl)2, H2O (cat.) (77%). viii) (CH2OH)2, p-TsOH (cat.), Dowex-50W-X8, MgSO4, benzene, reflux. ix) K2CO3, MeOH (75%,
2 steps).
Synlett 2002, No. 7, 1065–1068 ISSN 0936-5214 © Thieme Stuttgart · New York